Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4360–4369. doi: 10.1128/aem.63.11.4360-4369.1997

Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples.

C Wawer 1, M S Jetten 1, G Muyzer 1
PMCID: PMC168756  PMID: 9361423

Abstract

The genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples were determined in order to show in parallel the existing and active members of Desulfovibrio populations. DNA and total RNA were extracted from different anaerobic bioreactor samples; RNA was transcribed into cDNA. Subsequently, PCR was performed to amplify a ca.-440-bp fragment of the [NiFe] hydrogenase large-subunit gene and its mRNA. Denaturing gradient gel electrophoresis analysis was used to separate the PCR products according to their sequence and thereby to visualize the individual community members. Desulfovibrio strains corresponding to amplified [NiFe] hydrogenase transcripts were regarded as metabolically active, because in pure cultures transcripts were detectable in exponentially growing cells but not in cultures in the stationary phase. DNA sequencing and comparative sequence analysis were used to identify the detected organisms on the basis of their [NiFe] hydrogenase sequences. The genes of characterized Desulfovibrio spp. showed a considerable extent of divergence (ca. 30%), whereas sequences obtained from bacterial populations of the bioreactors showed a low level of variation and indicated the coexistence of closely related strains probably belonging to the species Desulfovibrio sulfodismutans. Under methanogenic conditions, all detected populations were active; under denitrifying conditions, no [NiFe] hydrogenase mRNA was visible. Changes in activity and composition of Desulfovibrio populations caused by changes in the environmental conditions could be monitored by using the approach described in this study.

Full Text

The Full Text of this article is available as a PDF (429.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chatelus C., Carrier P., Saignes P., Libert M. F., Berlier Y., Lespinat P. A., Fauque G., Legall J. Hydrogenase activity in aged, nonviable Desulfovibrio vulgaris cultures and its significance in anaerobic biocorrosion. Appl Environ Microbiol. 1987 Jul;53(7):1708–1710. doi: 10.1128/aem.53.7.1708-1710.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalsgaard T., Bak F. Nitrate Reduction in a Sulfate-Reducing Bacterium, Desulfovibrio desulfuricans, Isolated from Rice Paddy Soil: Sulfide Inhibition, Kinetics, and Regulation. Appl Environ Microbiol. 1994 Jan;60(1):291–297. doi: 10.1128/aem.60.1.291-297.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deckers H. M., Wilson F. R., Voordouw G. Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfovibrio vulgaris Miyazaki F. J Gen Microbiol. 1990 Oct;136(10):2021–2028. doi: 10.1099/00221287-136-10-2021. [DOI] [PubMed] [Google Scholar]
  6. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol. 1990 Jul;172(7):3609–3619. doi: 10.1128/jb.172.7.3609-3619.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fauque G., Peck H. D., Jr, Moura J. J., Huynh B. H., Berlier Y., DerVartanian D. V., Teixeira M., Przybyla A. E., Lespinat P. A., Moura I. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev. 1988 Dec;4(4):299–344. doi: 10.1111/j.1574-6968.1988.tb02748.x. [DOI] [PubMed] [Google Scholar]
  8. Felske A., Engelen B., Nübel U., Backhaus H. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol. 1996 Nov;62(11):4162–4167. doi: 10.1128/aem.62.11.4162-4167.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hatchikian E. C., Forget N., Bernadac A., Alazard D., Ollivier B. Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species. Res Microbiol. 1995 Feb;146(2):129–141. doi: 10.1016/0923-2508(96)80891-6. [DOI] [PubMed] [Google Scholar]
  10. Jeffrey WH, Nazaret S, Barkay T. Detection of the merA gene and its expression in the environment. Microb Ecol. 1996 Nov;32(3):293–303. doi: 10.1007/BF00183064. [DOI] [PubMed] [Google Scholar]
  11. Jenneman G. E., McInerney M. J., Knapp R. M. Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol. 1986 Jun;51(6):1205–1211. doi: 10.1128/aem.51.6.1205-1211.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karkhoff-Schweizer R. R., Huber D. P., Voordouw G. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol. 1995 Jan;61(1):290–296. doi: 10.1128/aem.61.1.290-296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Li C., Peck H. D., Jr, LeGall J., Przybyla A. E. Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe]hydrogenase of Desulfovibrio gigas. DNA. 1987 Dec;6(6):539–551. doi: 10.1089/dna.1987.6.539. [DOI] [PubMed] [Google Scholar]
  15. Lovell C. R., Hui Y. Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria. Appl Environ Microbiol. 1991 Sep;57(9):2602–2609. doi: 10.1128/aem.57.9.2602-2609.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marck C. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988 Mar 11;16(5):1829–1836. doi: 10.1093/nar/16.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McDonald I. R., Kenna E. M., Murrell J. C. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol. 1995 Jan;61(1):116–121. doi: 10.1128/aem.61.1.116-121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paul JH. Carbon Cycling: Molecular Regulation of Photosynthetic Carbon Fixation. Microb Ecol. 1996 Nov;32(3):231–245. doi: 10.1007/BF00183060. [DOI] [PubMed] [Google Scholar]
  19. Picard C., Ponsonnet C., Paget E., Nesme X., Simonet P. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol. 1992 Sep;58(9):2717–2722. doi: 10.1128/aem.58.9.2717-2722.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pichard S. L., Paul J. H. Gene expression per gene dose, a specific measure of gene expression in aquatic microorganisms. Appl Environ Microbiol. 1993 Feb;59(2):451–457. doi: 10.1128/aem.59.2.451-457.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pichard Scott L., Paul John H. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis. Appl Environ Microbiol. 1991 Jun;57(6):1721–1727. doi: 10.1128/aem.57.6.1721-1727.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Poulsen L. K., Ballard G., Stahl D. A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993 May;59(5):1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rousset M., Dermoun Z., Chippaux M., Bélaich J. P. Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans. Mol Microbiol. 1991 Jul;5(7):1735–1740. doi: 10.1111/j.1365-2958.1991.tb01922.x. [DOI] [PubMed] [Google Scholar]
  24. Rousset M., Dermoun Z., Hatchikian C. E., Bélaich J. P. Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans. Gene. 1990 Sep 28;94(1):95–101. doi: 10.1016/0378-1119(90)90473-5. [DOI] [PubMed] [Google Scholar]
  25. Sinigalliano C. D., Kuhn D. N., Jones R. D. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl Environ Microbiol. 1995 Jul;61(7):2702–2706. doi: 10.1128/aem.61.7.2702-2706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Suzuki M. T., Giovannoni S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996 Feb;62(2):625–630. doi: 10.1128/aem.62.2.625-630.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Teske A., Wawer C., Muyzer G., Ramsing N. B. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol. 1996 Apr;62(4):1405–1415. doi: 10.1128/aem.62.4.1405-1415.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ueda T., Suga Y., Yahiro N., Matsuguchi T. Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol. 1995 Mar;41(3):235–240. doi: 10.1139/m95-032. [DOI] [PubMed] [Google Scholar]
  29. Voordouw G., Menon N. K., LeGall J., Choi E. S., Peck H. D., Jr, Przybyla A. E. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol. 1989 May;171(5):2894–2899. doi: 10.1128/jb.171.5.2894-2899.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Voordouw G., Niviere V., Ferris F. G., Fedorak P. M., Westlake D. W. Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment. Appl Environ Microbiol. 1990 Dec;56(12):3748–3754. doi: 10.1128/aem.56.12.3748-3754.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ward BB. Nitrification and Denitrification: Probing the Nitrogen Cycle in Aquatic Environments. Microb Ecol. 1996 Nov;32(3):247–261. doi: 10.1007/BF00183061. [DOI] [PubMed] [Google Scholar]
  32. Wawer C., Muyzer G. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol. 1995 Jun;61(6):2203–2210. doi: 10.1128/aem.61.6.2203-2210.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wu L. F., Mandrand M. A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x. [DOI] [PubMed] [Google Scholar]
  34. Wyman M., Zehr J. P., Capone D. G. Temporal Variability in Nitrogenase Gene Expression in Natural Populations of the Marine Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1996 Mar;62(3):1073–1075. doi: 10.1128/aem.62.3.1073-1075.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xu H. H., Tabita F. R. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol. 1996 Jun;62(6):1913–1921. doi: 10.1128/aem.62.6.1913-1921.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zehr JP, Capone DG. Problems and Promises of Assaying the Genetic Potential for Nitrogen Fixation in the Marine Environment. Microb Ecol. 1996 Nov;32(3):263–281. doi: 10.1007/BF00183062. [DOI] [PubMed] [Google Scholar]
  37. van den Berg W. A., Stokkermans J. P., van Dongen W. M. The operon for the Fe-hydrogenase in Desulfovibrio vulgaris (Hildenborough): mapping of the transcript and regulation of expression. FEMS Microbiol Lett. 1993 Jun 1;110(1):85–90. doi: 10.1111/j.1574-6968.1993.tb06299.x. [DOI] [PubMed] [Google Scholar]
  38. van den Berg W. A., van Dongen W. M., Veeger C. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism. J Bacteriol. 1991 Jun;173(12):3688–3694. doi: 10.1128/jb.173.12.3688-3694.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES