Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4370–4376. doi: 10.1128/aem.63.11.4370-4376.1997

Bacteriophage-triggered defense systems: phage adaptation and design improvements.

G M Djordjevic 1, T R Klaenhammer 1
PMCID: PMC168757  PMID: 9361424

Abstract

A novel bacteriophage defense system, based on an inducible suicide gene, was challenged with a lactococcal bacteriophage to investigate the potential for phage adaptation. The defense system was encoded by pTRK414H, a high-copy-number replicon encoding a tightly regulated phi 31p trigger promoter fused to the lethal LlaIR+ restriction endonuclease cassette. Repeated transfers of Lactococcus lactis NCK690(pTRK414H) in the presence of phi 31 selected for phage phi 31 derivatives which were markedly less sensitive to phi 31p-LlaIR(+)-encoded restriction than the parental phage, phi 31. The efficiency of plaquing (EOP) on L. lactis NCK690(pTRK414H) was 10(-4) for phi 31 versus 0.4 for the derived phages. The mutant phages remained fully sensitive to LlaIR+ restriction, suggesting an alteration in the recognition or firing of the phi 31p promoter. Sequencing over the promoter region in four mutant phages revealed the identical C-to-A transversion, generating a Phe-to-Leu substitution, in a transcriptional activator of the phi 31p promoter, designated ORF2. The mutant phages were analyzed for their ability to induce the native phi 31p promoter element fused to a lacZst reporter gene. Compared to the parental phage, phi 31, lower levels of beta-galactosidase activity were induced throughout the lytic cycle, indicating that the strength at which the mutant phages activated the phi 31p promoter was altered. Based on these observations, improvements were made in promoter strength and restriction activity in an attempt to elevate the effectiveness of the phage-triggered suicide system. When the phi 31p-LlaIR+ cassette was paired with other abortive defense systems, Per31 and AbiA, the EOP of phi 31 was reduced to < 10(-10) and the level of phage in the culture was lowered below the detection limits of the assay.

Full Text

The Full Text of this article is available as a PDF (181.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidnenko E., Ehrlich D., Chopin M. C. Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J Bacteriol. 1995 Jul;177(13):3824–3829. doi: 10.1128/jb.177.13.3824-3829.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bojovic B., Djordjevic G., Topisirovic L. Improved vector for promoter screening in lactococci. Appl Environ Microbiol. 1991 Feb;57(2):385–388. doi: 10.1128/aem.57.2.385-388.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  5. Daly C., Fitzgerald G. F., Davis R. Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):99–110. doi: 10.1007/BF00395928. [DOI] [PubMed] [Google Scholar]
  6. Dinsmore P. K., Klaenhammer T. R. Bacteriophage resistance in Lactococcus. Mol Biotechnol. 1995 Dec;4(3):297–314. doi: 10.1007/BF02779022. [DOI] [PubMed] [Google Scholar]
  7. Dinsmore P. K., Klaenhammer T. R. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA. J Bacteriol. 1997 May;179(9):2949–2957. doi: 10.1128/jb.179.9.2949-2957.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Djordjevic G. M., Klaenhammer T. R. Positive selection, cloning vectors for gram-positive bacteria based on a restriction endonuclease cassette. Plasmid. 1996 Jan;35(1):37–45. doi: 10.1006/plas.1996.0004. [DOI] [PubMed] [Google Scholar]
  9. Djordjevic G., Bojovic B., Miladinov N., Topisirovic L. Cloning and molecular analysis of promoter-like sequences isolated from the chromosomal DNA of Lactobacillus acidophilus ATCC 4356. Can J Microbiol. 1997 Jan;43(1):61–69. doi: 10.1139/m97-009. [DOI] [PubMed] [Google Scholar]
  10. Durmaz E., Klaenhammer T. R. A Starter Culture Rotation Strategy Incorporating Paired Restriction/ Modification and Abortive Infection Bacteriophage Defenses in a Single Lactococcus lactis Strain. Appl Environ Microbiol. 1995 Apr;61(4):1266–1273. doi: 10.1128/aem.61.4.1266-1273.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Hill C., Massey I. J., Klaenhammer T. R. Rapid method to characterize lactococcal bacteriophage genomes. Appl Environ Microbiol. 1991 Jan;57(1):283–288. doi: 10.1128/aem.57.1.283-288.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill C., Miller L. A., Klaenhammer T. R. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol. 1991 Jul;173(14):4363–4370. doi: 10.1128/jb.173.14.4363-4370.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill C., Pierce K., Klaenhammer T. R. The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Appl Environ Microbiol. 1989 Sep;55(9):2416–2419. doi: 10.1128/aem.55.9.2416-2419.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moineau S., Pandian S., Klaenhammer T. R. Evolution of a Lytic Bacteriophage via DNA Acquisition from the Lactococcus lactis Chromosome. Appl Environ Microbiol. 1994 Jun;60(6):1832–1841. doi: 10.1128/aem.60.6.1832-1841.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Sullivan D. J., Klaenhammer T. R. C.LlaI is a bifunctional regulatory protein of the llaI restriction modification operon from Lactococcus lactis. Dev Biol Stand. 1995;85:591–595. [PubMed] [Google Scholar]
  17. O'Sullivan D. J., Klaenhammer T. R. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene. 1993 Dec 31;137(2):227–231. doi: 10.1016/0378-1119(93)90011-q. [DOI] [PubMed] [Google Scholar]
  18. O'Sullivan D. J., Walker S. A., West S. G., Klaenhammer T. R. Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology (N Y) 1996 Jan;14(1):82–87. doi: 10.1038/nbt0196-82. [DOI] [PubMed] [Google Scholar]
  19. O'Sullivan D. J., Zagula K., Klaenhammer T. R. In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J Bacteriol. 1995 Jan;177(1):134–143. doi: 10.1128/jb.177.1.134-143.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'sullivan D. J., Hill C., Klaenhammer T. R. Effect of Increasing the Copy Number of Bacteriophage Origins of Replication, in trans, on Incoming-Phage Proliferation. Appl Environ Microbiol. 1993 Aug;59(8):2449–2456. doi: 10.1128/aem.59.8.2449-2456.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parreira R., Ehrlich S. D., Chopin M. C. Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Mol Microbiol. 1996 Jan;19(2):221–230. doi: 10.1046/j.1365-2958.1996.371896.x. [DOI] [PubMed] [Google Scholar]
  22. Raya R. R., Kleeman E. G., Luchansky J. B., Klaenhammer T. R. Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol. 1989 Sep;55(9):2206–2213. doi: 10.1128/aem.55.9.2206-2213.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sanders M. E., Leonhard P. J., Sing W. D., Klaenhammer T. R. Conjugal strategy for construction of fast Acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl Environ Microbiol. 1986 Nov;52(5):1001–1007. doi: 10.1128/aem.52.5.1001-1007.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schroeder C. J., Robert C., Lenzen G., McKay L. L., Mercenier A. Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus beta-galactosidase sequences. J Gen Microbiol. 1991 Feb;137(2):369–380. doi: 10.1099/00221287-137-2-369. [DOI] [PubMed] [Google Scholar]
  25. Sing W. D., Klaenhammer T. R. A strategy for rotation of different bacteriophage defenses in a lactococcal single-strain starter culture system. Appl Environ Microbiol. 1993 Feb;59(2):365–372. doi: 10.1128/aem.59.2.365-372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES