Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4377–4384. doi: 10.1128/aem.63.11.4377-4384.1997

A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells.

L R Ptitsyn 1, G Horneck 1, O Komova 1, S Kozubek 1, E A Krasavin 1, M Bonev 1, P Rettberg 1
PMCID: PMC168758  PMID: 9361425

Abstract

A genetically controlled luminescent bacterial reporter assay, the SOS lux test, was developed for rapid detection of environmental genotoxins. The bioassay is based on the recombinant plasmid pPLS-1, which was constructed as a derivative of pBR322, carrying the promoterless luxCDABFE genes of Photobacterium leiognathi downstream of a truncated cda gene from ColD with a strong SOS promoter. E. coli recA+ strains containing this construction are inducible to high levels of light production in the presence of substances or agents that cause damage to the DNA of the cells. The light signal, reflecting the SOS-inducing potency, is recorded from the growing culture within 1 s, and the test results are available within 1 to 2 h. Induction of bioluminescence was demonstrated by treatment of E. coli C600(pPLS-1) with 6 genotoxic chemicals (mitomycin C, N-methyl-N'-nitro-N-nitrosoguanidine, nalidixic acid, dimethylsulfate, hydrogen peroxide, and formaldehyde) and with UV and gamma radiation. A clear dose-response relationship was established for all eight genotoxins. The sensitivity of the SOS lux test is similar to that of other bioassays for genotoxicity or mutagenicity, such as the SOS chromotest, umu test, and Ames mutatest. These results indicate that the SOS lux test is potentially useful for the in situ and continuous detection of genotoxins.

Full Text

The Full Text of this article is available as a PDF (222.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N. Identifying environmental chemicals causing mutations and cancer. Science. 1979 May 11;204(4393):587–593. doi: 10.1126/science.373122. [DOI] [PubMed] [Google Scholar]
  2. Ames B. N., Mccann J., Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975 Dec;31(6):347–364. doi: 10.1016/0165-1161(75)90046-1. [DOI] [PubMed] [Google Scholar]
  3. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burlage R. S., Sayler G. S., Larimer F. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J Bacteriol. 1990 Sep;172(9):4749–4757. doi: 10.1128/jb.172.9.4749-4757.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frey J., Ghersa P., Palacios P. G., Belet M. Physical and genetic analysis of the ColD plasmid. J Bacteriol. 1986 Apr;166(1):15–19. doi: 10.1128/jb.166.1.15-19.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Isildar M., Bakale G. Radiation-induced mutagenicity and lethality in ames tester strains of salmonella. Radiat Res. 1984 Nov;100(2):396–411. [PubMed] [Google Scholar]
  7. Koudela K., Ryznar L., Kozubek S., Slotova J. Induction of SOS repair by ionizing radiation. Results from experiments at accelerators. Radiat Environ Biophys. 1992;31(4):343–348. doi: 10.1007/BF01210214. [DOI] [PubMed] [Google Scholar]
  8. Kozubek S., Krasavin E. A., Amirtayev K. G., Tokarova B., Soska I., Drasil V., Bonev M. The induction of revertants by heavy particles and gamma-rays in Salmonella tester strains. Mutat Res. 1989 Feb;210(2):221–226. doi: 10.1016/0027-5107(89)90082-1. [DOI] [PubMed] [Google Scholar]
  9. Kozubek S., Krasavin E. A., Soska I., Drasil V., Amirtayev K. G., Tokarova B., Bonev M. Induction of the SOS response in Escherichia coli by heavy ions. Mutat Res. 1989 Nov;215(1):49–53. doi: 10.1016/0027-5107(89)90216-9. [DOI] [PubMed] [Google Scholar]
  10. Kozubek S., Ogievetskaya M. M., Krasavin E. A., Drasil V., Soska J. Investigation of the SOS response of Escherichia coli after gamma-irradiation by means of the SOS chromotest. Mutat Res. 1990 May;230(1):1–7. doi: 10.1016/0027-5107(90)90036-4. [DOI] [PubMed] [Google Scholar]
  11. Lee C. Y., Szittner R. B., Meighen E. A. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli. Eur J Biochem. 1991 Oct 1;201(1):161–167. doi: 10.1111/j.1432-1033.1991.tb16269.x. [DOI] [PubMed] [Google Scholar]
  12. Levin D. E., Hollstein M., Christman M. F., Schwiers E. A., Ames B. N. A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7445–7449. doi: 10.1073/pnas.79.23.7445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levin D. E., Yamasaki E., Ames B. N. A new Salmonella tester strain, TA97, for the detection of frameshift mutagens. A run of cytosines as a mutational hot-spot. Mutat Res. 1982 Jun;94(2):315–330. doi: 10.1016/0027-5107(82)90294-9. [DOI] [PubMed] [Google Scholar]
  14. Maron D. M., Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983 May;113(3-4):173–215. doi: 10.1016/0165-1161(83)90010-9. [DOI] [PubMed] [Google Scholar]
  15. McDaniels A. E., Reyes A. L., Wymer L. J., Rankin C. C., Stelma G. N., Jr Comparison of the Salmonella (Ames) test, umu tests, and the SOS Chromotests for detecting genotoxins. Environ Mol Mutagen. 1990;16(3):204–215. doi: 10.1002/em.2850160308. [DOI] [PubMed] [Google Scholar]
  16. Mersch-Sundermann V., Schneider U., Klopman G., Rosenkranz H. S. SOS induction in Escherichia coli and Salmonella mutagenicity: a comparison using 330 compounds. Mutagenesis. 1994 May;9(3):205–224. doi: 10.1093/mutage/9.3.205. [DOI] [PubMed] [Google Scholar]
  17. Nakamura S. I., Oda Y., Shimada T., Oki I., Sugimoto K. SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002: examination with 151 chemicals. Mutat Res. 1987 Dec;192(4):239–246. doi: 10.1016/0165-7992(87)90063-7. [DOI] [PubMed] [Google Scholar]
  18. Oda Y., Nakamura S., Oki I., Kato T., Shinagawa H. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res. 1985 Oct;147(5):219–229. doi: 10.1016/0165-1161(85)90062-7. [DOI] [PubMed] [Google Scholar]
  19. Oda Y., Yamazaki H., Watanabe M., Nohmi T., Shimada T. Development of high sensitive umu test system: rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high O-acetyltransferase activity. Mutat Res. 1995 Apr;334(2):145–156. doi: 10.1016/0165-1161(95)90005-5. [DOI] [PubMed] [Google Scholar]
  20. Ptitsyn L. R., Fatova M. A., Stepanov A. I. Ekspressiia genov bioliuminestsentnoi sistemy Photobacterium leiognathi v Escherichia coli. Mol Gen Mikrobiol Virusol. 1990 Feb;(2):26–29. [PubMed] [Google Scholar]
  21. Ptitsyn L. R., Gurevich V. B., Barsanova T. G., Shenderov A. N., Khaikinson M. Ia. Klonirovanie i insertsionnyi mutagenez fragmenta DNK, kodiruiushchego liuminestsentnuiu sistemu Photobacterium leiognathi. Mol Gen Mikrobiol Virusol. 1988 Oct;(10):17–19. [PubMed] [Google Scholar]
  22. Quillardet P., Frelat G., Nguyen V. D., Hofnung M. Detection of ionizing radiations with the SOS Chromotest, a bacterial short-term test for genotoxic agents. Mutat Res. 1989 Oct;216(5):251–257. doi: 10.1016/0165-1161(89)90050-2. [DOI] [PubMed] [Google Scholar]
  23. Quillardet P., Hofnung M. Induction by UV light of the SOS function sfiA in Escherichia coli strains deficient or proficient in excision repair. J Bacteriol. 1984 Jan;157(1):35–38. doi: 10.1128/jb.157.1.35-38.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Quillardet P., Hofnung M. The SOS chromotest: a review. Mutat Res. 1993 Oct;297(3):235–279. doi: 10.1016/0165-1110(93)90019-j. [DOI] [PubMed] [Google Scholar]
  25. Quillardet P., Huisman O., D'Ari R., Hofnung M. SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5971–5975. doi: 10.1073/pnas.79.19.5971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993 Sep;59(9):3083–3090. doi: 10.1128/aem.59.9.3083-3090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White P. A., Rasmussen J. B. SOS chromotest results in a broader context: empirical relationships between genotoxic potency, mutagenic potency, and carcinogenic potency. Environ Mol Mutagen. 1996;27(4):270–305. doi: 10.1002/(SICI)1098-2280(1996)27:4<270::AID-EM4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  29. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES