Abstract
Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin from B. sphaericus in the recipient strain. The Bacillus thuringiensis subsp. israelensis cry11Aal gene (referred to as cry11A), encoding a delta-endotoxin with toxicity against Culex, Aedes, and Anopheles larvae, was integrated either by a single crossover event [strain 2297 (::pHT5601), harboring the entire recombinant plasmid] or by two successive crossover events [strain 2297 (::cry11A)]. The level of the Cry11A production in B. sphaericus was high; two crystalline inclusions were produced in strain 2297 (::pHT5601). Synthesis of the Cry11A toxin conferred toxicity to the recombinant strains against Aedes aegypti larvae, for which the parental strain was not toxic. Interestingly, the level of larvicidal activity of strain 2297 (::pHT5601) against Anopheles stephensi was as high as that of B. thuringiensis subsp. israelensis and suggested synergy between the B. thuringiensis and B. sphaericus toxins. The toxicities of parental and recombinant B. sphaericus strains against Culex quinquefasciatus were similar, but the recombinant strains killed the larvae more rapidly. The production of the Cry11A toxin in B. sphaericus also partially restored toxicity for C. quinquefasciatus larvae from a population resistant to B. sphaericus 1593. In vivo recombination therefore appears to be a promising approach to the creation of new B. sphaericus strains for vector control.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angsuthanasombat C., Crickmore N., Ellar D. J. Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):63–68. doi: 10.1016/0378-1097(92)90584-b. [DOI] [PubMed] [Google Scholar]
- Bar E., Lieman-Hurwitz J., Rahamim E., Keynan A., Sandler N. Cloning and expression of Bacillus thuringiensis israelensis delta-endotoxin DNA in B. sphaericus. J Invertebr Pathol. 1991 Mar;57(2):149–158. doi: 10.1016/0022-2011(91)90110-c. [DOI] [PubMed] [Google Scholar]
- Barloy F., Delécluse A., Nicolas L., Lecadet M. M. Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J Bacteriol. 1996 Jun;178(11):3099–3105. doi: 10.1128/jb.178.11.3099-3105.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann L., Broadwell A. H., Baumann P. Sequence analysis of the mosquitocidal toxin genes encoding 51.4- and 41.9-kilodalton proteins from Bacillus sphaericus 2362 and 2297. J Bacteriol. 1988 May;170(5):2045–2050. doi: 10.1128/jb.170.5.2045-2050.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry C., Jackson-Yap J., Oei C., Hindley J. Nucleotide sequence of two toxin genes from Bacillus sphaericus IAB59: sequence comparisons between five highly toxinogenic strains. Nucleic Acids Res. 1989 Sep 25;17(18):7516–7516. doi: 10.1093/nar/17.18.7516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourgouin C., Delécluse A., de la Torre F., Szulmajster J. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl Environ Microbiol. 1990 Feb;56(2):340–344. doi: 10.1128/aem.56.2.340-344.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broadwell A. H., Baumann L., Baumann P. The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. J Bacteriol. 1990 May;172(5):2217–2223. doi: 10.1128/jb.172.5.2217-2223.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C., Yu Y. M., Dai S. M., Law S. K., Gill S. S. High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol. 1993 Mar;59(3):815–821. doi: 10.1128/aem.59.3.815-821.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delécluse A., Charles J. F., Klier A., Rapoport G. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol. 1991 Jun;173(11):3374–3381. doi: 10.1128/jb.173.11.3374-3381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delécluse A., Poncet S., Klier A., Rapoport G. Expression of cryIVA and cryIVB Genes, Independently or in Combination, in a Crystal-Negative Strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol. 1993 Nov;59(11):3922–3927. doi: 10.1128/aem.59.11.3922-3927.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delécluse A., Rosso M. L., Ragni A. Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Appl Environ Microbiol. 1995 Dec;61(12):4230–4235. doi: 10.1128/aem.61.12.4230-4235.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dervyn E., Poncet S., Klier A., Rapoport G. Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol. 1995 May;177(9):2283–2291. doi: 10.1128/jb.177.9.2283-2291.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donovan W. P., Dankocsik C., Gilbert M. P. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J Bacteriol. 1988 Oct;170(10):4732–4738. doi: 10.1128/jb.170.10.4732-4738.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalfon A., Charles J. F., Bourgouin C., de Barjac H. Sporulation of Bacillus sphaericus 2297: an electron microscope study of crystal-like inclusion biogenesis and toxicity to mosquito larvae. J Gen Microbiol. 1984 Apr;130(4):893–900. doi: 10.1099/00221287-130-4-893. [DOI] [PubMed] [Google Scholar]
- Lecadet M. M., Blondel M. O., Ribier J. Generalized transduction in Bacillus thuringiensis var. berliner 1715 using bacteriophage CP-54Ber. J Gen Microbiol. 1980 Nov;121(1):203–212. doi: 10.1099/00221287-121-1-203. [DOI] [PubMed] [Google Scholar]
- Lederberg E. M., Cohen S. N. Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol. 1974 Sep;119(3):1072–1074. doi: 10.1128/jb.119.3.1072-1074.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lereclus D., Vallade M., Chaufaux J., Arantes O., Rambaud S. Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology (N Y) 1992 Apr;10(4):418–421. doi: 10.1038/nbt0492-418. [DOI] [PubMed] [Google Scholar]
- Liu J. W., Hindley J., Porter A. G., Priest F. G. New high-toxicity mosquitocidal strains of Bacillus sphaericus lacking a 100-kilodalton-toxin gene. Appl Environ Microbiol. 1993 Oct;59(10):3470–3473. doi: 10.1128/aem.59.10.3470-3473.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen-Leroux C., Charles J. F., Thiéry I., Georghiou G. P. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur J Biochem. 1995 Feb 15;228(1):206–210. doi: 10.1111/j.1432-1033.1995.tb20251.x. [DOI] [PubMed] [Google Scholar]
- Perez-Casal J., Price J. A., Maguin E., Scott J. R. An M protein with a single C repeat prevents phagocytosis of Streptococcus pyogenes: use of a temperature-sensitive shuttle vector to deliver homologous sequences to the chromosome of S. pyogenes. Mol Microbiol. 1993 May;8(5):809–819. doi: 10.1111/j.1365-2958.1993.tb01628.x. [DOI] [PubMed] [Google Scholar]
- Poncet S., Anello G., Delécluse A., Klier A., Rapoport G. Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol. 1993 Nov;59(11):3928–3930. doi: 10.1128/aem.59.11.3928-3930.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter A. G., Davidson E. W., Liu J. W. Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev. 1993 Dec;57(4):838–861. doi: 10.1128/mr.57.4.838-861.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter A. G. Mosquitocidal toxins, genes and bacteria: the hit squad. Parasitol Today. 1996 May;12(5):175–179. doi: 10.1016/0169-4758(96)10013-2. [DOI] [PubMed] [Google Scholar]
- Priest F. G. Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis. J Appl Bacteriol. 1992 May;72(5):357–369. doi: 10.1111/j.1365-2672.1992.tb01847.x. [DOI] [PubMed] [Google Scholar]
- Rao D. R., Mani T. R., Rajendran R., Joseph A. S., Gajanana A., Reuben R. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc. 1995 Mar;11(1):1–5. [PubMed] [Google Scholar]
- Thomas W. E., Ellar D. J. Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci. 1983 Mar;60:181–197. doi: 10.1242/jcs.60.1.181. [DOI] [PubMed] [Google Scholar]
- Trieu-Cuot P., Klier A., Courvalin P. DNA sequences specifying the transcription of the streptococcal kanamycin resistance gene in Escherichia coli and Bacillus subtilis. Mol Gen Genet. 1985;198(2):348–352. doi: 10.1007/BF00383017. [DOI] [PubMed] [Google Scholar]
- Trisrisook M., Pantuwatana S., Bhumiratana A., Panbangred W. Molecular cloning of the 130-kilodalton mosquitocidal delta-endotoxin gene of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus. Appl Environ Microbiol. 1990 Jun;56(6):1710–1716. doi: 10.1128/aem.56.6.1710-1716.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]