Abstract
Detection of pathogens in contaminated food products by PCR can result in false-positive data due to the amplification of DNA from nonviable cells. A new method based on reverse transcription-PCR (RT-PCR) amplification of mRNA for the specific detection of viable Listeria monocytogenes was developed. The expression of three L. monocytogenes genes, iap, hly, and prfA, was examined to determine a suitable target for amplification of RT-PCR. Total RNA from L. monocytogenes was isolated, and following DNase treatment, the RNA was amplified by both RT-PCR and PCR with primers specific for the three genes. Amplicon detection was accomplished by Southern hybridization to digoxigenin-labeled gene probes. The levels of expression of these three genes differed markedly, and the results indicated that the iap gene would provide a good target for development of a specific method for detection of viable L. monocytogenes based on RT-PCR amplification. After a 1-h enrichment, the 371-bp iap-specific product was detected with a sensitivity of ca. 10 to 15 CFU/ml from pure culture. Detection of the 713-bp hly-specific amplicon was ca. 4,000 times less sensitive after 1 h, whereas detection of the 508-bp prfA product showed the lowest level of sensitivity, with detection not observed until after a 5-h enrichment period. The amplification of the iap mRNA was specific for L. monocytogenes. Overall, the assay could be completed in ca. 54 h. The use of RT-PCR amplification for the detection of viable L. monocytogenes was validated in artificially contaminated cooked ground beef. Following a 2-h enrichment incubation, the iap-specific amplification product could be detected in a cooked meat sample that was originally inoculated with ca. 3 CFU/g. These results support the usefulness of RT-PCR amplification of mRNA as a sensitive method for the specific detection of viable L. monocytogenes and indicate that this method may prove useful in the detection of this pathogen in ready-to-eat, refrigerated meat products.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baez L. A., Juneja V. K., Sackitey S. K. Chemiluminescent enzyme immunoassay for detection of PCR-amplified enterotoxin A from Clostridium perfringens. Int J Food Microbiol. 1996 Sep;32(1-2):145–158. doi: 10.1016/0168-1605(96)01119-1. [DOI] [PubMed] [Google Scholar]
- Bassler H. A., Flood S. J., Livak K. J., Marmaro J., Knorr R., Batt C. A. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl Environ Microbiol. 1995 Oct;61(10):3724–3728. doi: 10.1128/aem.61.10.3724-3728.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessesen M. T., Luo Q. A., Rotbart H. A., Blaser M. J., Ellison R. T., 3rd Detection of Listeria monocytogenes by using the polymerase chain reaction. Appl Environ Microbiol. 1990 Sep;56(9):2930–2932. doi: 10.1128/aem.56.9.2930-2932.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bsat N., Batt C. A. A combined modified reverse dot-blot and nested PCR assay for the specific non-radioactive detection of Listeria monocytogenes. Mol Cell Probes. 1993 Jun;7(3):199–207. doi: 10.1006/mcpr.1993.1029. [DOI] [PubMed] [Google Scholar]
- Bubert A., Kuhn M., Goebel W., Köhler S. Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol. 1992 Dec;174(24):8166–8171. doi: 10.1128/jb.174.24.8166-8171.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bubert A., Köhler S., Goebel W. The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol. 1992 Aug;58(8):2625–2632. doi: 10.1128/aem.58.8.2625-2632.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakraborty T., Leimeister-Wächter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol. 1992 Jan;174(2):568–574. doi: 10.1128/jb.174.2.568-574.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooray K. J., Nishibori T., Xiong H., Matsuyama T., Fujita M., Mitsuyama M. Detection of multiple virulence-associated genes of Listeria monocytogenes by PCR in artificially contaminated milk samples. Appl Environ Microbiol. 1994 Aug;60(8):3023–3026. doi: 10.1128/aem.60.8.3023-3026.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datta A. R., Wentz B. A., Shook D., Trucksess M. W. Synthetic oligodeoxyribonucleotide probes for detection of Listeria monocytogenes. Appl Environ Microbiol. 1988 Dec;54(12):2933–2937. doi: 10.1128/aem.54.12.2933-2937.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engstrand L., Nguyen A. M., Graham D. Y., el-Zaatari F. A. Reverse transcription and polymerase chain reaction amplification of rRNA for detection of Helicobacter species. J Clin Microbiol. 1992 Sep;30(9):2295–2301. doi: 10.1128/jcm.30.9.2295-2301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber J. M. Thermal resistance of Listeria monocytogenes in foods. Int J Food Microbiol. 1989 Jun;8(3):285–291. doi: 10.1016/0168-1605(89)90029-9. [DOI] [PubMed] [Google Scholar]
- Fitter S., Heuzenroeder M., Thomas C. J. A combined PCR and selective enrichment method for rapid detection of Listeria monocytogenes. J Appl Bacteriol. 1992 Jul;73(1):53–59. doi: 10.1111/j.1365-2672.1992.tb04968.x. [DOI] [PubMed] [Google Scholar]
- Fluit A. C., Widjojoatmodjo M. N., Box A. T., Torensma R., Verhoef J. Rapid detection of salmonellae in poultry with the magnetic immuno-polymerase chain reaction assay. Appl Environ Microbiol. 1993 May;59(5):1342–1346. doi: 10.1128/aem.59.5.1342-1346.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freitag N. E., Rong L., Portnoy D. A. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun. 1993 Jun;61(6):2537–2544. doi: 10.1128/iai.61.6.2537-2544.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furrer B., Candrian U., Hoefelein C., Luethy J. Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol. 1991 May;70(5):372–379. doi: 10.1111/j.1365-2672.1991.tb02951.x. [DOI] [PubMed] [Google Scholar]
- Herman L. M., De Block J. H., Moermans R. J. Direct detection of Listeria monocytogenes in 25 milliliters of raw milk by a two-step PCR with nested primers. Appl Environ Microbiol. 1995 Feb;61(2):817–819. doi: 10.1128/aem.61.2.817-819.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapperud G., Vardund T., Skjerve E., Hornes E., Michaelsen T. E. Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA. Appl Environ Microbiol. 1993 Sep;59(9):2938–2944. doi: 10.1128/aem.59.9.2938-2944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhn M., Goebel W. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun. 1989 Jan;57(1):55–61. doi: 10.1128/iai.57.1.55-61.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Köhler S., Bubert A., Vogel M., Goebel W. Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level. J Bacteriol. 1991 Aug;173(15):4668–4674. doi: 10.1128/jb.173.15.4668-4674.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Köhler S., Leimeister-Wächter M., Chakraborty T., Lottspeich F., Goebel W. The gene coding for protein p60 of Listeria monocytogenes and its use as a specific probe for Listeria monocytogenes. Infect Immun. 1990 Jun;58(6):1943–1950. doi: 10.1128/iai.58.6.1943-1950.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leimeister-Wächter M., Domann E., Chakraborty T. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol. 1992 Feb;174(3):947–952. doi: 10.1128/jb.174.3.947-952.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leimeister-Wächter M., Haffner C., Domann E., Goebel W., Chakraborty T. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of listeria monocytogenes. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8336–8340. doi: 10.1073/pnas.87.21.8336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino S., Okada Y., Maruyama T. A new method for direct detection of Listeria monocytogenes from foods by PCR. Appl Environ Microbiol. 1995 Oct;61(10):3745–3747. doi: 10.1128/aem.61.10.3745-3747.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masters C. I., Shallcross J. A., Mackey B. M. Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. J Appl Bacteriol. 1994 Jul;77(1):73–79. doi: 10.1111/j.1365-2672.1994.tb03047.x. [DOI] [PubMed] [Google Scholar]
- Mengaud J., Dramsi S., Gouin E., Vazquez-Boland J. A., Milon G., Cossart P. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol. 1991 Sep;5(9):2273–2283. doi: 10.1111/j.1365-2958.1991.tb02158.x. [DOI] [PubMed] [Google Scholar]
- Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect Immun. 1988 Apr;56(4):766–772. doi: 10.1128/iai.56.4.766-772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niederhauser C., Candrian U., Höfelein C., Jermini M., Bühler H. P., Lüthy J. Use of polymerase chain reaction for detection of Listeria monocytogenes in food. Appl Environ Microbiol. 1992 May;58(5):1564–1568. doi: 10.1128/aem.58.5.1564-1568.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pignato S., Marino A. M., Emanuele M. C., Iannotta V., Caracappa S., Giammanco G. Evaluation of new culture media for rapid detection and isolation of salmonellae in foods. Appl Environ Microbiol. 1995 May;61(5):1996–1999. doi: 10.1128/aem.61.5.1996-1999.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossen L., Holmstrøm K., Olsen J. E., Rasmussen O. F. A rapid polymerase chain reaction (PCR)-based assay for the identification of Listeria monocytogenes in food samples. Int J Food Microbiol. 1991 Nov;14(2):145–151. doi: 10.1016/0168-1605(91)90101-t. [DOI] [PubMed] [Google Scholar]
- Swaminathan B., Feng P. Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol. 1994;48:401–426. doi: 10.1146/annurev.mi.48.100194.002153. [DOI] [PubMed] [Google Scholar]
- Thomas E. J., King R. K., Burchak J., Gannon V. P. Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl Environ Microbiol. 1991 Sep;57(9):2576–2580. doi: 10.1128/aem.57.9.2576-2580.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker S. J., Archer P., Banks J. G. Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol. 1990 Feb;68(2):157–162. doi: 10.1111/j.1365-2672.1990.tb02561.x. [DOI] [PubMed] [Google Scholar]
- Wernars K., Heuvelman C. J., Chakraborty T., Notermans S. H. Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J Appl Bacteriol. 1991 Feb;70(2):121–126. doi: 10.1111/j.1365-2672.1991.tb04437.x. [DOI] [PubMed] [Google Scholar]
- Wuenscher M. D., Köhler S., Bubert A., Gerike U., Goebel W. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol. 1993 Jun;175(11):3491–3501. doi: 10.1128/jb.175.11.3491-3501.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]