Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4456–4461. doi: 10.1128/aem.63.11.4456-4461.1997

Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite.

S Tauriainen 1, M Karp 1, W Chang 1, M Virta 1
PMCID: PMC168765  PMID: 9361432

Abstract

Luminescent bacterial strains for the measurement of bioavailable arsenite and antimony were constructed. The expression of firefly luciferase was controlled by the regulatory unit of the ars operon of Staphylococcus aureus plasmid pI258 in recombinant plasmid pTOO21, with S. aureus RN4220, Bacillus subtilis BR151, and Escherichia coli MC1061 as host strains. Strain RN4220(pTOO21) was found to be the most sensitive for metal detection responding to arsenite, antimonite, and cadmium, the lowest detectable concentrations being 100, 33, and 330 nM, respectively. Strains BR151(pTOO21) and MC1061(pTOO21) responded to arsenite, arsenate, antimonite, and cadmium, the lowest detectable concentrations being 3.3 and 330 microM and 330 and 330 nM with BR151(pTOO21), respectively, and 3.3, 33, 3.3, and 33 microM with MC1061(pTOO21), respectively. In the absence of the mentioned ions, the expression of luciferase was repressed and only a small amount of background light was emitted. Other ions did not notably interfere with the measurement in any of the strains tested. Freeze-drying of the cells did not decrease the sensitivity of the detection of arsenite; however, the induction coefficients were somewhat lower.

Full Text

The Full Text of this article is available as a PDF (178.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bitton G., Koopman B. Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev Environ Contam Toxicol. 1992;125:1–22. doi: 10.1007/978-1-4612-2890-5_1. [DOI] [PubMed] [Google Scholar]
  2. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  3. Cervantes C., Ji G., Ramírez J. L., Silver S. Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev. 1994 Dec;15(4):355–367. doi: 10.1111/j.1574-6976.1994.tb00145.x. [DOI] [PubMed] [Google Scholar]
  4. Cohn D. H., Mileham A. J., Simon M. I., Nealson K. H., Rausch S. K., Bonam D., Baldwin T. O. Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. J Biol Chem. 1985 May 25;260(10):6139–6146. [PubMed] [Google Scholar]
  5. Corbisier P., Ji G., Nuyts G., Mergeay M., Silver S. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett. 1993 Jun 15;110(2):231–238. doi: 10.1111/j.1574-6968.1993.tb06325.x. [DOI] [PubMed] [Google Scholar]
  6. Farrell R. E., Germida J. J., Huang P. M. Effects of chemical speciation in growth media on the toxicity of mercury(II). Appl Environ Microbiol. 1993 May;59(5):1507–1514. doi: 10.1128/aem.59.5.1507-1514.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Janda I., Opekarová M. Long-term preservation of active luminous bacteria by lyophilization. J Biolumin Chemilumin. 1989 Jan-Mar;3(1):27–29. doi: 10.1002/bio.1170030106. [DOI] [PubMed] [Google Scholar]
  8. Ji G., Silver S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol. 1992 Jun;174(11):3684–3694. doi: 10.1128/jb.174.11.3684-3694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnston T. C., Thompson R. B., Baldwin T. O. Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase. J Biol Chem. 1986 Apr 15;261(11):4805–4811. [PubMed] [Google Scholar]
  10. Karube I., Nakanishi K. Immobilized cells used for detection and analysis. Curr Opin Biotechnol. 1994 Feb;5(1):54–59. doi: 10.1016/s0958-1669(05)80070-9. [DOI] [PubMed] [Google Scholar]
  11. King J. M., Digrazia P. M., Applegate B., Burlage R., Sanseverino J., Dunbar P., Larimer F., Sayler G. S. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990 Aug 17;249(4970):778–781. doi: 10.1126/science.249.4970.778. [DOI] [PubMed] [Google Scholar]
  12. Kreiswirth B. N., Löfdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature. 1983 Oct 20;305(5936):709–712. doi: 10.1038/305709a0. [DOI] [PubMed] [Google Scholar]
  13. Lampinen J., Koivisto L., Wahlsten M., Mäntsälä P., Karp M. Expression of luciferase genes from different origins in Bacillus subtilis. Mol Gen Genet. 1992 Apr;232(3):498–504. doi: 10.1007/BF00266255. [DOI] [PubMed] [Google Scholar]
  14. Le Grice S. F., Beuck V., Mous J. Expression of biologically active human T-cell lymphotropic virus type III reverse transcriptase in Bacillus subtilis. Gene. 1987;55(1):95–103. doi: 10.1016/0378-1119(87)90252-6. [DOI] [PubMed] [Google Scholar]
  15. MCELROY W. D., SELIGER H. E. THE CHEMISTRY OF LIGHT EMISSION. Adv Enzymol Relat Areas Mol Biol. 1963;25:119–166. doi: 10.1002/9780470122709.ch3. [DOI] [PubMed] [Google Scholar]
  16. Novick R. P., Murphy E., Gryczan T. J., Baron E., Edelman I. Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid. 1979 Jan;2(1):109–129. doi: 10.1016/0147-619x(79)90010-6. [DOI] [PubMed] [Google Scholar]
  17. Rosenstein R., Peschel A., Wieland B., Götz F. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol. 1992 Jun;174(11):3676–3683. doi: 10.1128/jb.174.11.3676-3683.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schenk S., Laddaga R. A. Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):133–138. doi: 10.1016/0378-1097(92)90596-g. [DOI] [PubMed] [Google Scholar]
  19. Scott D. L., Ramanathan S., Shi W., Rosen B. P., Daunert S. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem. 1997 Jan 1;69(1):16–20. doi: 10.1021/ac960788x. [DOI] [PubMed] [Google Scholar]
  20. Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993 Sep;59(9):3083–3090. doi: 10.1128/aem.59.9.3083-3090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shi W., Dong J., Scott R. A., Ksenzenko M. Y., Rosen B. P. The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem. 1996 Apr 19;271(16):9291–9297. doi: 10.1074/jbc.271.16.9291. [DOI] [PubMed] [Google Scholar]
  22. Shi W., Wu J., Rosen B. P. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem. 1994 Aug 5;269(31):19826–19829. [PubMed] [Google Scholar]
  23. Sidyakina T. M., Golimbet V. E. Viability and genetic stability of the bacterium Escherichia coli HB101 with the recombinant plasmid during preservation by various methods. Cryobiology. 1991 Jun;28(3):251–254. doi: 10.1016/0011-2240(91)90030-r. [DOI] [PubMed] [Google Scholar]
  24. Silver S., Ji G., Bröer S., Dey S., Dou D., Rosen B. P. Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol. 1993 May;8(4):637–642. doi: 10.1111/j.1365-2958.1993.tb01607.x. [DOI] [PubMed] [Google Scholar]
  25. Summers A. O. Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol. 1992 May;174(10):3097–3101. doi: 10.1128/jb.174.10.3097-3101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Virta M., Karp M., Vuorinen P. Nitric oxide donor-mediated killing of bioluminescent Escherichia coli. Antimicrob Agents Chemother. 1994 Dec;38(12):2775–2779. doi: 10.1128/aac.38.12.2775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wood K. V., Gruber M. G. Transduction in microbial biosensors using multiplexed bioluminescence. Biosens Bioelectron. 1996;11(3):207–214. doi: 10.1016/0956-5663(96)88407-7. [DOI] [PubMed] [Google Scholar]
  28. Young F. E., Smith C., Reilly B. E. Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. J Bacteriol. 1969 Jun;98(3):1087–1097. doi: 10.1128/jb.98.3.1087-1097.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Wet J. R., Wood K. V., Helinski D. R., DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7870–7873. doi: 10.1073/pnas.82.23.7870. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES