Abstract
Xanthomonas vesicatoria and Xanthomonas axonopodis pv. vesicatoria, causal agents for bacterial spot of tomatoes and peppers, are difficult to distinguish from other xanthomonads found on field-grown plants. A genomic subtraction technique with subtracter DNA from nonpathogenic epiphytic xanthomonads was used to enrich for sequences that could serve as diagnostic probes for these pathogens. A 1.75-kb PstI-NotI fragment (KK1750) that preferentially hybridized to X. vesicatoria DNA and X. axonopodis pv. vesicatoria DNA was identified and cloned into pBluescriptII KS+. It hybridized to 46 (89%) of the 52 geographically diverse bacterial spot-causing xanthomonad (bsx) strains included in this study. The six probe-negative strains were genotypically and pathologically distinct from the other bsx strains studied. Two of these strains, DC91-1 and DC91-2, resembled X. campestris pv. raphani in that they also infected radish plants. X. vesicatoria strains gave stronger hybridization signals than did most X. axonopodis pv. vesicatoria strains. In a survey of 110 non-bsx plant-associated bacteria, including 44 nonvesicatoria phytopathogenic xanthomonads and 43 epiphytic xanthomonad strains, only 8 were probe positive, but the responses were weak. Further testing revealed that one of these strains was actually a tomato pathogen. Pulsed-field gel electrophoresis and Southern blot analysis of 46 bsx strains indicated that KK1750 sequences could be either plasmid-borne (10.9%), chromosome-borne (43.4%), or present on both replicons (45.7%). KK1750, unique in its ability to hybridize to both X. axonopodis pv. vesicatoria and X. vesicatoria strains, should facilitate disease diagnosis for these important plant pathogens.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arlat M., Gough C. L., Barber C. E., Boucher C., Daniels M. J. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):593–601. doi: 10.1094/mpmi-4-593. [DOI] [PubMed] [Google Scholar]
- Benedict A. A., Alvarez A. M., Pollard L. W. Pathovar-Specific Antigens of Xanthomonas campestris pv. begoniae and X. campestris pv. pelargonii Detected with Monoclonal Antibodies. Appl Environ Microbiol. 1990 Feb;56(2):572–574. doi: 10.1128/aem.56.2.572-574.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook D., Sequeira L. The use of subtractive hybridization to obtain a DNA probe specific for Pseudomonas solanacearum race 3. Mol Gen Genet. 1991 Jul;227(3):401–410. doi: 10.1007/BF00273930. [DOI] [PubMed] [Google Scholar]
- Cuppels D. A., Ainsworth T. Molecular and Physiological Characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola Strains That Produce the Phytotoxin Coronatine. Appl Environ Microbiol. 1995 Oct;61(10):3530–3536. doi: 10.1128/aem.61.10.3530-3536.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuppels D. A. Generation and Characterization of Tn5 Insertion Mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol. 1986 Feb;51(2):323–327. doi: 10.1128/aem.51.2.323-327.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuppels D. A., Moore R. A., Morris V. L. Construction and Use of a Nonradioactive DNA Hybridization Probe for Detection of Pseudomonas syringae pv. Tomato on Tomato Plants. Appl Environ Microbiol. 1990 Jun;56(6):1743–1749. doi: 10.1128/aem.56.6.1743-1749.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darrasse A., Kotoujansky A., Bertheau Y. Isolation by genomic subtraction of DNA probes specific for Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol. 1994 Jan;60(1):298–306. doi: 10.1128/aem.60.1.298-306.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kearney B., Staskawicz B. J. Characterization of IS476 and its role in bacterial spot disease of tomato and pepper. J Bacteriol. 1990 Jan;172(1):143–148. doi: 10.1128/jb.172.1.143-148.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach J. E., White F. F. Bacterial avirulence genes. Annu Rev Phytopathol. 1996;34:153–179. doi: 10.1146/annurev.phyto.34.1.153. [DOI] [PubMed] [Google Scholar]
- Leite R. P., Jr, Minsavage G. V., Bonas U., Stall R. E. Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol. 1994 Apr;60(4):1068–1077. doi: 10.1128/aem.60.4.1068-1077.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 1994 Jul;60(7):2286–2295. doi: 10.1128/aem.60.7.2286-2295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seal S. E., Jackson L. A., Daniels M. J. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Appl Environ Microbiol. 1992 Nov;58(11):3751–3758. doi: 10.1128/aem.58.11.3751-3758.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straus D., Ausubel F. M. Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1889–1893. doi: 10.1073/pnas.87.5.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
