Abstract
A quantitative molecular technique was developed for rapid analysis of microbial community diversity in various environments. The technique employed PCR in which one of the two primers used was fluorescently labeled at the 5' end and was used to amplify a selected region of bacterial genes encoding 16S rRNA from total community DNA. The PCR product was digested with restriction enzymes, and the fluorescently labeled terminal restriction fragment was precisely measured by using an automated DNA sequencer. Computer-simulated analysis of terminal restriction fragment length polymorphisms (T-RFLP) for 1,002 eubacterial sequences showed that with proper selection of PCR primers and restriction enzymes, 686 sequences could be PCR amplified and classified into 233 unique terminal restriction fragment lengths or "ribotypes." Using T-RFLP, we were able to distinguish all bacterial strains in a model bacterial community, and the pattern was consistent with the predicted outcome. Analysis of complex bacterial communities with T-RFLP revealed high species diversity in activated sludge, bioreactor sludge, aquifer sand, and termite guts; as many as 72 unique ribotypes were found in these communities, with 36 ribotypes observed in the termite guts. The community T-RFLP patterns were numerically analyzed and hierarchically clustered. The pattern derived from termite guts was found to be distinctly different from the patterns derived from the other three communities. Overall, our results demonstrated that T-RFLP is a powerful tool for assessing the diversity of complex bacterial communities and for rapidly comparing the community structure and diversity of different ecosystems.
Full Text
The Full Text of this article is available as a PDF (679.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avaniss-Aghajani E., Jones K., Holtzman A., Aronson T., Glover N., Boian M., Froman S., Brunk C. F. Molecular technique for rapid identification of mycobacteria. J Clin Microbiol. 1996 Jan;34(1):98–102. doi: 10.1128/jcm.34.1.98-102.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609–1613. doi: 10.1073/pnas.91.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond P. L., Hugenholtz P., Keller J., Blackall L. L. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol. 1995 May;61(5):1910–1916. doi: 10.1128/aem.61.5.1910-1916.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunk C. F., Avaniss-Aghajani E., Brunk C. A. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl Environ Microbiol. 1996 Mar;62(3):872–879. doi: 10.1128/aem.62.3.872-879.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton R. A., Sutton G., Hinkle P. S., Jr, Bult C., Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol. 1995 Jul;45(3):595–599. doi: 10.1099/00207713-45-3-595. [DOI] [PubMed] [Google Scholar]
- Dunbar J., White S., Forney L. Genetic Diversity through the Looking Glass: Effect of Enrichment Bias. Appl Environ Microbiol. 1997 Apr;63(4):1326–1331. doi: 10.1128/aem.63.4.1326-1331.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans P. J., Mang D. T., Young L. Y. Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures. Appl Environ Microbiol. 1991 Feb;57(2):450–454. doi: 10.1128/aem.57.2.450-454.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrelly V., Rainey F. A., Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol. 1995 Jul;61(7):2798–2801. doi: 10.1128/aem.61.7.2798-2801.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
- Kopczynski E. D., Bateson M. M., Ward D. M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. doi: 10.1128/aem.60.2.746-748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laguerre G., Allard M. R., Revoy F., Amarger N. Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes. Appl Environ Microbiol. 1994 Jan;60(1):56–63. doi: 10.1128/aem.60.1.56-63.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee D. H., Zo Y. G., Kim S. J. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol. 1996 Sep;62(9):3112–3120. doi: 10.1128/aem.62.9.3112-3120.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The Ribosomal Database Project (RDP). Nucleic Acids Res. 1996 Jan 1;24(1):82–85. doi: 10.1093/nar/24.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyer C. L., Dobbs F. C., Karl D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. doi: 10.1128/aem.60.3.871-879.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muyzer G., Teske A., Wirsen C. O., Jannasch H. W. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol. 1995 Sep;164(3):165–172. doi: 10.1007/BF02529967. [DOI] [PubMed] [Google Scholar]
- Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993 Mar;59(3):695–700. doi: 10.1128/aem.59.3.695-700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paster B. J., Dewhirst F. E., Cooke S. M., Fussing V., Poulsen L. K., Breznak J. A. Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol. 1996 Feb;62(2):347–352. doi: 10.1128/aem.62.2.347-352.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picard C., Ponsonnet C., Paget E., Nesme X., Simonet P. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol. 1992 Sep;58(9):2717–2722. doi: 10.1128/aem.58.9.2717-2722.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reysenbach A. L., Giver L. J., Wickham G. S., Pace N. R. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol. 1992 Oct;58(10):3417–3418. doi: 10.1128/aem.58.10.3417-3418.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt T. M., DeLong E. F., Pace N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- States D. J. Molecular sequence accuracy: analysing imperfect data. Trends Genet. 1992 Feb;8(2):52–55. doi: 10.1016/0168-9525(92)90349-9. [DOI] [PubMed] [Google Scholar]
- Tebbe C. C., Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol. 1993 Aug;59(8):2657–2665. doi: 10.1128/aem.59.8.2657-2665.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tötsch M., Brömmelkamp E., Stücker A., Fille M., Gross R., Wiesner P., Schmid K. W., Böcker W., Dockhorn-Dworniczak B. Identification of mycobacteria to the species level by automated restriction enzyme fragment length polymorphism analysis. Virchows Arch. 1995;427(1):85–89. doi: 10.1007/BF00203742. [DOI] [PubMed] [Google Scholar]
- Völsch A., Nader W. F., Geiss H. K., Nebe G., Birr C. Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Appl Environ Microbiol. 1990 Aug;56(8):2430–2435. doi: 10.1128/aem.56.8.2430-2435.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol. 1994 Mar;60(3):792–800. doi: 10.1128/aem.60.3.792-800.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward D. M., Weller R., Bateson M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990 May 3;345(6270):63–65. doi: 10.1038/345063a0. [DOI] [PubMed] [Google Scholar]
- Zheng D., Alm E. W., Stahl D. A., Raskin L. Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol. 1996 Dec;62(12):4504–4513. doi: 10.1128/aem.62.12.4504-4513.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Graaf A. A., Mulder A., de Bruijn P., Jetten M. S., Robertson L. A., Kuenen J. G. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol. 1995 Apr;61(4):1246–1251. doi: 10.1128/aem.61.4.1246-1251.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]