Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4534–4542. doi: 10.1128/aem.63.11.4534-4542.1997

Development and application of monoclonal antibodies for in situ detection of indigenous bacterial strains in aquatic ecosystems.

U C Faude 1, M G Höfle 1
PMCID: PMC168773  PMID: 9361440

Abstract

Strain-specific monoclonal antibodies (MAbs) were developed for three different bacterial isolates obtained from a freshwater environment (Lake Plusssee) in the spring of 1990. The three isolates, which were identified by molecular methods, were as follows: Cytophaga johnsonae PX62, Comamonas acidovorans PX54, and Aeromonas hydrophila PU7718. These strains represented three species that were detected in high abundance during a set of mesocosm experiments in Lake Plusssee by the direct analysis of low-molecular-weight RNAs from bacterioplankton. We developed one MAb each for the bacterial isolates PX54 and PU7718 that did not show any cross-reactivity with other bacterial strains by immunofluorescence microscopy. Each MAb recognized the general lipopolysaccharide fraction of the homologous strain. These MAbs were tested successfully for their ability to be used for the in situ detection and counting of bacteria in lake water by immunofluorescence microscopy. During the spring of 1993, A. hydrophila PU7718 showed a depth distribution in Lake Plusssee with a pronounced maximum abundance at 6 m, whereas Comamonas acidovorans PX54 showed a depth distribution with a maximum abundance at the surface. The application of these MAbs to the freshwater samples enabled us to determine the cell morphologies and microhabitats of these strains within their natural environment. The presence of as many as 8,000 cells of these strains per ml in their original habitats 3 years after their initial isolation demonstrated the persistence of individual strains of heterotrophic bacteria over long time spans in pelagic habitats.

Full Text

The Full Text of this article is available as a PDF (433.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Assmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A. Improved In Situ Tracking of Rhizosphere Bacteria Using Dual Staining with Fluorescence-Labeled Antibodies and rRNA-Targeted Oligonucleotides. Microb Ecol. 1997 Jan;33(1):32–40. doi: 10.1007/s002489900005. [DOI] [PubMed] [Google Scholar]
  3. Brettar I., Höfle M. G. Influence of ecosystematic factors on survival of Escherichia coli after large-scale release into lake water mesocosms. Appl Environ Microbiol. 1992 Jul;58(7):2201–2210. doi: 10.1128/aem.58.7.2201-2210.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christensen B., Torsvik T., Lien T. Immunomagnetically captured thermophilic sulfate-reducing bacteria from north sea oil field waters. Appl Environ Microbiol. 1992 Apr;58(4):1244–1248. doi: 10.1128/aem.58.4.1244-1248.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahle A. B., Laake M. Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters. Appl Environ Microbiol. 1982 Jan;43(1):169–176. doi: 10.1128/aem.43.1.169-176.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desmonts C., Minet J., Colwell R., Cormier M. Fluorescent-antibody method useful for detecting viable but nonculturable Salmonella spp. in chlorinated wastewater. Appl Environ Microbiol. 1990 May;56(5):1448–1452. doi: 10.1128/aem.56.5.1448-1452.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enger O., Husevåg B., Goksøyr J. Presence of the fish pathogen Vibrio salmonicida in fish farm sediments. Appl Environ Microbiol. 1989 Nov;55(11):2815–2818. doi: 10.1128/aem.55.11.2815-2818.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hahn D., Amann R. I., Zeyer J. Whole-Cell Hybridization of Frankia Strains with Fluorescence- or Digoxigenin-Labeled, 16S rRNA-Targeted Oligonucleotide Probes. Appl Environ Microbiol. 1993 Jun;59(6):1709–1716. doi: 10.1128/aem.59.6.1709-1716.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoff K. A. Rapid and simple method for double staining of bacteria with 4',6-diamidino-2-phenylindole and fluorescein isothiocyanate-labeled antibodies. Appl Environ Microbiol. 1988 Dec;54(12):2949–2952. doi: 10.1128/aem.54.12.2949-2952.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofle M. G., Brettar I. Genotyping of heterotrophic bacteria from the central baltic sea by use of low-molecular-weight RNA profiles. Appl Environ Microbiol. 1996 Apr;62(4):1383–1390. doi: 10.1128/aem.62.4.1383-1390.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Höfle M. G. Bacterioplankton community structure and dynamics after large-scale release of nonindigenous bacteria as revealed by low-molecular-weight-RNA analysis. Appl Environ Microbiol. 1992 Oct;58(10):3387–3394. doi: 10.1128/aem.58.10.3387-3394.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hübner I., Steinmetz I., Obst U., Giebel D., Bitter-Suermann D. Rapid determination of members of the family Enterobacteriaceae in drinking water by an immunological assay using a monoclonal antibody against enterobacterial common antigen. Appl Environ Microbiol. 1992 Sep;58(9):3187–3191. doi: 10.1128/aem.58.9.3187-3191.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lanoil B. D., Giovannoni S. J. Identification of bacterial cells by chromosomal painting. Appl Environ Microbiol. 1997 Mar;63(3):1118–1123. doi: 10.1128/aem.63.3.1118-1123.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Madoff L. C., Michel J. L., Kasper D. L. A monoclonal antibody identifies a protective C-protein alpha-antigen epitope in group B streptococci. Infect Immun. 1991 Jan;59(1):204–210. doi: 10.1128/iai.59.1.204-210.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol. 1993 Jul;59(7):2293–2298. doi: 10.1128/aem.59.7.2293-2298.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ramos-González M. I., Ruiz-Cabello F., Brettar I., Garrido F., Ramos J. L. Tracking genetically engineered bacteria: monoclonal antibodies against surface determinants of the soil bacterium Pseudomonas putida 2440. J Bacteriol. 1992 May;174(9):2978–2985. doi: 10.1128/jb.174.9.2978-2985.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sledjeski D. D., Weiner R. M. Production and characterization of monoclonal antibodies specific for Shewanella colwelliana exopolysaccharide. Appl Environ Microbiol. 1993 May;59(5):1565–1572. doi: 10.1128/aem.59.5.1565-1572.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steinmetz I., Rheinheimer C., Hübner I., Bitter-Suermann D. Genus-specific epitope on the 60-kilodalton Legionella heat shock protein recognized by a monoclonal antibody. J Clin Microbiol. 1991 Feb;29(2):346–354. doi: 10.1128/jcm.29.2.346-354.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tamplin M. L., Martin A. L., Ruple A. D., Cook D. W., Kaspar C. W. Enzyme immunoassay for identification of Vibrio vulnificus in seawater, sediment, and oysters. Appl Environ Microbiol. 1991 Apr;57(4):1235–1240. doi: 10.1128/aem.57.4.1235-1240.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tuomi P., Torsvik T., Heldal M., Bratbak G. Bacterial population dynamics in a meromictic lake. Appl Environ Microbiol. 1997 Jun;63(6):2181–2188. doi: 10.1128/aem.63.6.2181-2188.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ward BB, Voytek MA, Witzel K. Phylogenetic Diversity of Natural Populations of Ammonia Oxidizers Investigated by Specific PCR Amplification. Microb Ecol. 1997 Mar;33(2):87–96. doi: 10.1007/s002489900011. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES