Abstract
Escherichia coli KO11 was previously constructed to produce ethanol from acid hydrolysates of hemicellulose (pentoses and hexoses) by the chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB). Klebsiella oxytoca P2 was constructed in an analogous fashion for the simultaneous saccharification and fermentation of cellulose and contains PTS enzymes for cellobiose. In this study, KO11 was further engineered for the fermentation of cellulose by adding the K. oxytoca casAB genes encoding Enzyme IIcellobiose and phospho-beta-glucosidase. Although the two K. oxytoca genes were well expressed in cloning hosts such as DH5 alpha, both were expressed poorly in E. coli KO11, a derivative of E. coli B. Spontaneous mutants which exhibited more than 15-fold-higher specific activities for cellobiose metabolism were isolated. The mutations of these mutants resided in the plasmid rather than the host. Three mutants were characterized by sequence analysis. All contained similar internal deletions which eliminated the casAB promoter and operator regions and placed the lacZ Shine-Dalgarno region immediately upstream from the casA Shine-Dalgarno region. KO11 harboring mutant plasmids (pLOI1908, pLOI1909, or pLOI1910) rapidly fermented cellobiose to ethanol, and the yield was more than 90% of the theoretical yield. Two of these strains were used with commercial cellulase to ferment mixed-waste office paper to ethanol.
Full Text
The Full Text of this article is available as a PDF (165.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G., Xu L. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol. 1992 Jul;9(4):688–706. doi: 10.1093/oxfordjournals.molbev.a040753. [DOI] [PubMed] [Google Scholar]
- Jishage M., Ishihama A. Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol. 1997 Feb;179(3):959–963. doi: 10.1128/jb.179.3.959-963.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katzen R., Fowler D. E. Ethanol from lignocellulosic wastes with utilization of recombinant bacteria. Appl Biochem Biotechnol. 1994 Spring;45-46:697–707. doi: 10.1007/BF02941841. [DOI] [PubMed] [Google Scholar]
- Lai X., Davis F. C., Hespell R. B., Ingram L. O. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol. 1997 Feb;63(2):355–363. doi: 10.1128/aem.63.2.355-363.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsay S. E., Bothast R. J., Ingram L. O. Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures. Appl Microbiol Biotechnol. 1995 Apr;43(1):70–75. doi: 10.1007/BF00170625. [DOI] [PubMed] [Google Scholar]
- Moniruzzaman M., Lai X., York S. W., Ingram L. O. Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria. J Bacteriol. 1997 Mar;179(6):1880–1886. doi: 10.1128/jb.179.6.1880-1886.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta K., Beall D. S., Mejia J. P., Shanmugam K. T., Ingram L. O. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol. 1991 Apr;57(4):893–900. doi: 10.1128/aem.57.4.893-900.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood B. E., Ingram L. O. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol. 1992 Jul;58(7):2103–2110. doi: 10.1128/aem.58.7.2103-2110.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]