Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4651–4656. doi: 10.1128/aem.63.12.4651-4656.1997

Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes.

A Galkin 1, L Kulakova 1, T Yoshimura 1, K Soda 1, N Esaki 1
PMCID: PMC168787  PMID: 9406383

Abstract

We describe a simple method for enzymatic synthesis of L and D amino acids from alpha-keto acids with Escherichia coli cells which express heterologous genes. L-amino acids were produced with thermostable L-amino acid dehydrogenase and formate dehydrogenase (FDH) from alpha-keto acids and ammonium formate with only an intracellular pool of NAD+ for the regeneration of NADH. We constructed plasmids containing, in addition to the FDH gene, the genes for amino acid dehydrogenases, including i.e., leucine dehydrogenase, alanine dehydrogenase, and phenylalanine dehydrogenase. L-Leucine, L-valine, L-norvaline, L-methionine, L-phenylalanine, and L-tyrosine were synthesized with the recombinant E. coli cells with high chemical yields (> 80%) and high optical yields (up to 100% enantiomeric excess). Stereospecific conversion of various alpha-keto acids to D amino acids was also examined with recombinant E. coli cells containing a plasmid coding for the four heterologous genes of the thermostable enzymes D-amino acid aminotransferase, alanine racemase, L-alanine dehydrogenase, and FDH. Optically pure D enantiomers of glutamate and leucine were obtained.

Full Text

The Full Text of this article is available as a PDF (157.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badet B., Roise D., Walsh C. T. Inactivation of the dadB Salmonella typhimurium alanine racemase by D and L isomers of beta-substituted alanines: kinetics, stoichiometry, active site peptide sequencing, and reaction mechanism. Biochemistry. 1984 Oct 23;23(22):5188–5194. doi: 10.1021/bi00317a016. [DOI] [PubMed] [Google Scholar]
  2. Bailey J. E. Toward a science of metabolic engineering. Science. 1991 Jun 21;252(5013):1668–1675. doi: 10.1126/science.2047876. [DOI] [PubMed] [Google Scholar]
  3. Filc-DeRicco S., Gelbard A. S., Cooper A. J., Rosenspire K. C., Nieves E. Short-term metabolic fate of L-[13N]glutamate in the Walker 256 carcinosarcoma in vivo. Cancer Res. 1990 Aug 15;50(16):4839–4844. [PubMed] [Google Scholar]
  4. Galkin A., Kulakova L., Tishkov V., Esaki N., Soda K. Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol. 1995 Dec;44(3-4):479–483. doi: 10.1007/BF00169947. [DOI] [PubMed] [Google Scholar]
  5. Hummel W., Kula M. R. Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem. 1989 Sep 1;184(1):1–13. doi: 10.1111/j.1432-1033.1989.tb14983.x. [DOI] [PubMed] [Google Scholar]
  6. Inagaki K., Tanizawa K., Badet B., Walsh C. T., Tanaka H., Soda K. Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry. 1986 Jun 3;25(11):3268–3274. doi: 10.1021/bi00359a028. [DOI] [PubMed] [Google Scholar]
  7. Kamphuis J., Meijer E. M., Boesten W. H., Sonke T., van den Tweel W. J., Schoemaker H. E. New developments in the synthesis of natural and unnatural amino acids. Ann N Y Acad Sci. 1992 Nov 30;672:510–527. [PubMed] [Google Scholar]
  8. Kuroda S., Tanizawa K., Sakamoto Y., Tanaka H., Soda K. Alanine dehydrogenases from two Bacillus species with distinct thermostabilities: molecular cloning, DNA and protein sequence determination, and structural comparison with other NAD(P)(+)-dependent dehydrogenases. Biochemistry. 1990 Jan 30;29(4):1009–1015. doi: 10.1021/bi00456a025. [DOI] [PubMed] [Google Scholar]
  9. Nishimura K., Tanizawa K., Yoshimura T., Esaki N., Futaki S., Manning J. M., Soda K. Effect of substitution of a lysyl residue that binds pyridoxal phosphate in thermostable D-amino acid aminotransferase by arginine and alanine. Biochemistry. 1991 Apr 23;30(16):4072–4077. doi: 10.1021/bi00230a036. [DOI] [PubMed] [Google Scholar]
  10. Ohshima T., Nishida N., Bakthavatsalam S., Kataoka K., Takada H., Yoshimura T., Esaki N., Soda K. The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Eur J Biochem. 1994 Jun 1;222(2):305–312. doi: 10.1111/j.1432-1033.1994.tb18869.x. [DOI] [PubMed] [Google Scholar]
  11. Takada H., Yoshimura T., Ohshima T., Esaki N., Soda K. Thermostable phenylalanine dehydrogenase of Thermoactinomyces intermedius: cloning, expression, and sequencing of its gene. J Biochem. 1991 Mar;109(3):371–376. doi: 10.1093/oxfordjournals.jbchem.a123388. [DOI] [PubMed] [Google Scholar]
  12. Tanizawa K., Asano S., Masu Y., Kuramitsu S., Kagamiyama H., Tanaka H., Soda K. The primary structure of thermostable D-amino acid aminotransferase from a thermophilic Bacillus species and its correlation with L-amino acid aminotransferases. J Biol Chem. 1989 Feb 15;264(5):2450–2454. [PubMed] [Google Scholar]
  13. Tanizawa K., Ohshima A., Scheidegger A., Inagaki K., Tanaka H., Soda K. Thermostable alanine racemase from Bacillus stearothermophilus: DNA and protein sequence determination and secondary structure prediction. Biochemistry. 1988 Feb 23;27(4):1311–1316. doi: 10.1021/bi00404a033. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES