Abstract
The ability of the facultative photoheterotroph Rhodobacter sphaeroides to tolerate and reduce high levels of tellurite in addition to at least 10 other rare earth metal oxides and oxyanions has considerable potential for detoxification and bioremediation of contaminated environments. We report the identification and characterization of two loci involved in high-level tellurite resistance. The first locus contains four genes, two of which, trgAB, confer increased tellurite resistance when introduced into the related bacterium Paracoccus denitrificans. The trgAB-derived products display no significant homology to known proteins, but both are likely to be membrane-associated proteins. Immediately downstream of trgB, the cysK (cysteine synthase) and orf323 genes were identified. Disruption of the cysK gene resulted in decreased tellurite resistance in R. sphaeroides, confirming earlier observations on the importance of cysteine metabolism for high-level tellurite resistance. The second locus identified is represented by the telA gene, which is separated from trgAB by 115 kb. The telA gene product is 65% similar to the product of the klaB (telA) gene from the tellurite-resistance-encoding kilA operon from plasmid RK2. The genes immediately linked to the R. sphaeroides telA gene have no similarity to other components of the kilA operon. R. sphaeroides telA could not functionally substitute for the plasmid RK2 telA gene, indicating substantial functional divergence between the two gene products. However, inactivation of R. sphaeroides telA resulted in a significant decrease in tellurite resistance compared to the wild-type strain. Both cysK and telA null mutations readily gave rise to suppressors, suggesting that the phenomenon of high-level tellurite resistance in R. sphaeroides is complex and other, as yet uncharacterized, loci may be involved.
Full Text
The Full Text of this article is available as a PDF (384.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avazéri C., Turner R. J., Pommier J., Weiner J. H., Giordano G., Verméglio A. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology. 1997 Apr;143(Pt 4):1181–1189. doi: 10.1099/00221287-143-4-1181. [DOI] [PubMed] [Google Scholar]
- COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
- Chen C. M., Misra T. K., Silver S., Rosen B. P. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem. 1986 Nov 15;261(32):15030–15038. [PubMed] [Google Scholar]
- Chiong M., Barra R., González E., Vásquez C. Resistance of Thermus spp. to Potassium Tellurite. Appl Environ Microbiol. 1988 Feb;54(2):610–612. doi: 10.1128/aem.54.2.610-612.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiong M., González E., Barra R., Vásquez C. Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol. 1988 Jul;170(7):3269–3273. doi: 10.1128/jb.170.7.3269-3273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J., Donohue T. J., Kaplan S. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J Bacteriol. 1988 Jan;170(1):320–329. doi: 10.1128/jb.170.1.320-329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donohue T. J., Kaplan S. Genetic techniques in rhodospirillaceae. Methods Enzymol. 1991;204:459–485. doi: 10.1016/0076-6879(91)04024-i. [DOI] [PubMed] [Google Scholar]
- Dryden S. C., Kaplan S. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 1990 Dec 25;18(24):7267–7277. doi: 10.1093/nar/18.24.7267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eraso J. M., Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol. 1994 Jan;176(1):32–43. doi: 10.1128/jb.176.1.32-43.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomelsky M., Kaplan S. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol. 1995 Mar;177(6):1634–1637. doi: 10.1128/jb.177.6.1634-1637.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomelsky M., Kaplan S. The Rhodobacter sphaeroides 2.4.1 rho gene: expression and genetic analysis of structure and function. J Bacteriol. 1996 Apr;178(7):1946–1954. doi: 10.1128/jb.178.7.1946-1954.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goncharoff P., Saadi S., Chang C. H., Saltman L. H., Figurski D. H. Structural, molecular, and genetic analysis of the kilA operon of broad-host-range plasmid RK2. J Bacteriol. 1991 Jun;173(11):3463–3477. doi: 10.1128/jb.173.11.3463-3477.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill S. M., Jobling M. G., Lloyd B. H., Strike P., Ritchie D. A. Functional expression of the tellurite resistance determinant from the IncHI-2 plasmid pMER610. Mol Gen Genet. 1993 Oct;241(1-2):203–212. doi: 10.1007/BF00280218. [DOI] [PubMed] [Google Scholar]
- Jobling M. G., Ritchie D. A. Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol Gen Genet. 1987 Jun;208(1-2):288–293. doi: 10.1007/BF00330455. [DOI] [PubMed] [Google Scholar]
- Jobling M. G., Ritchie D. A. The nucleotide sequence of a plasmid determinant for resistance to tellurium anions. Gene. 1988 Jun 30;66(2):245–258. doi: 10.1016/0378-1119(88)90361-7. [DOI] [PubMed] [Google Scholar]
- Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
- Lloyd-Jones G., Osborn A. M., Ritchie D. A., Strike P., Hobman J. L., Brown N. L., Rouch D. A. Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli: a model for the mechanism of resistance. FEMS Microbiol Lett. 1994 May 1;118(1-2):113–119. doi: 10.1111/j.1574-6968.1994.tb06812.x. [DOI] [PubMed] [Google Scholar]
- Lloyd-Jones G., Ritchie D. A., Strike P. Biochemical and biophysical analysis of plasmid pMJ600-encoded tellurite [TeO2(3-)] resistance. FEMS Microbiol Lett. 1991 Jun 1;65(1):19–24. doi: 10.1016/0378-1097(91)90464-l. [DOI] [PubMed] [Google Scholar]
- Moore M. D., Kaplan S. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol. 1992 Mar;174(5):1505–1514. doi: 10.1128/jb.174.5.1505-1514.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol. 1993 Apr;175(8):2304–2313. doi: 10.1128/jb.175.8.2304-2313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol. 1992 Oct;174(20):6444–6454. doi: 10.1128/jb.174.20.6444-6454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Gara J. P., Kaplan S. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J Bacteriol. 1997 Mar;179(6):1951–1961. doi: 10.1128/jb.179.6.1951-1961.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
- Rosen B. P., Weigel U., Karkaria C., Gangola P. Molecular characterization of an anion pump. The arsA gene product is an arsenite(antimonate)-stimulated ATPase. J Biol Chem. 1988 Mar 5;263(7):3067–3070. [PubMed] [Google Scholar]
- Spratt B. G., Hedge P. J., te Heesen S., Edelman A., Broome-Smith J. K. Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene. 1986;41(2-3):337–342. doi: 10.1016/0378-1119(86)90117-4. [DOI] [PubMed] [Google Scholar]
- Suwanto A., Kaplan S. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol. 1989 Nov;171(11):5840–5849. doi: 10.1128/jb.171.11.5840-5849.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. E., Hou Y., Turner R. J., Weiner J. H. Location of a potassium tellurite resistance operon (tehA tehB) within the terminus of Escherichia coli K-12. J Bacteriol. 1994 May;176(9):2740–2742. doi: 10.1128/jb.176.9.2740-2742.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner R. J., Hou Y., Weiner J. H., Taylor D. E. The arsenical ATPase efflux pump mediates tellurite resistance. J Bacteriol. 1992 May;174(9):3092–3094. doi: 10.1128/jb.174.9.3092-3094.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner R. J., Weiner J. H., Taylor D. E. In vivo complementation and site-specific mutagenesis of the tellurite resistance determinant kilAtelAB from IncP alpha plasmid RK2Ter. Microbiology. 1994 Jun;140(Pt 6):1319–1326. doi: 10.1099/00221287-140-6-1319. [DOI] [PubMed] [Google Scholar]
- Turner R. J., Weiner J. H., Taylor D. E. Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can J Microbiol. 1995 Jan;41(1):92–98. doi: 10.1139/m95-012. [DOI] [PubMed] [Google Scholar]
- Turner R. J., Weiner J. H., Taylor D. E. The tellurite-resistance determinants tehAtehB and klaAklaBtelB have different biochemical requirements. Microbiology. 1995 Dec;141(Pt 12):3133–3140. doi: 10.1099/13500872-141-12-3133. [DOI] [PubMed] [Google Scholar]
- Walter E. G., Taylor D. E. Comparison of tellurite resistance determinants from the IncP alpha plasmid RP4Ter and the IncHII plasmid pHH1508a. J Bacteriol. 1989 Apr;171(4):2160–2165. doi: 10.1128/jb.171.4.2160-2165.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter E. G., Thomas C. M., Ibbotson J. P., Taylor D. E. Transcriptional analysis, translational analysis, and sequence of the kilA-tellurite resistance region of plasmid RK2Ter. J Bacteriol. 1991 Feb;173(3):1111–1119. doi: 10.1128/jb.173.3.1111-1119.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter E. G., Weiner J. H., Taylor D. E. Nucleotide sequence and overexpression of the tellurite-resistance determinant from the IncHII plasmid pHH1508a. Gene. 1991 May 15;101(1):1–7. doi: 10.1016/0378-1119(91)90217-y. [DOI] [PubMed] [Google Scholar]
- Wang A. Y., Grogan D. W., Cronan J. E., Jr Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry. 1992 Nov 17;31(45):11020–11028. doi: 10.1021/bi00160a011. [DOI] [PubMed] [Google Scholar]
- Whelan K. F., Colleran E. Restriction endonuclease mapping of the HI2 incompatibility group plasmid R478. J Bacteriol. 1992 Feb;174(4):1197–1204. doi: 10.1128/jb.174.4.1197-1204.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whelan K. F., Colleran E., Taylor D. E. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol. 1995 Sep;177(17):5016–5027. doi: 10.1128/jb.177.17.5016-5027.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whelan K. F., Sherburne R. K., Taylor D. E. Characterization of a region of the IncHI2 plasmid R478 which protects Escherichia coli from toxic effects specified by components of the tellurite, phage, and colicin resistance cluster. J Bacteriol. 1997 Jan;179(1):63–71. doi: 10.1128/jb.179.1.63-71.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yurkov V., Jappe J., Vermeglio A. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol. 1996 Nov;62(11):4195–4198. doi: 10.1128/aem.62.11.4195-4198.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]