Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4784–4792. doi: 10.1128/aem.63.12.4784-4792.1997

Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH.

D Emerson 1, C Moyer 1
PMCID: PMC168801  PMID: 9406396

Abstract

A gel-stabilized gradient method that employed opposing gradients of Fe2+ and O2 was used to isolate and characterize two new Fe-oxidizing bacteria from a neutral pH, Fe(2+)-containing groundwater in Michigan. Two separate enrichment cultures were obtained, and in each the cells grew in a distinct, rust-colored band in the gel at the oxic-anoxic interface. The cells were tightly associated with the ferric hydroxides. Repeated serial dilutions of both enrichments resulted in the isolation of two axenic strains, ES-1 and ES-2. The cultures were judged pure based on (i) growth from single colonies in tubes at dilutions of 10(-7) (ES-2) (ES-2) and 10(-8) (ES-1); (ii) uniform cell morphologies, i.e., ES-1 was a motile long thin, bent, or S-shaped rod and ES-2 was a shorter curved rod; and (iii) no growth on a heterotrophic medium. Strain ES-1 grew to a density of 10(8) cells/ml on FeS with a doubling time of 8 h. Strain ES-2 grew to a density of 5 x 10(7) cells/ml with a doubling time of 12.5 h. Both strains also grew on FeCO3. Neither strain grew without Fe2+, nor did they grow with glucose, pyruvate, acetate, Mn, or H2S as an electron donor. Studies with an oxygen microelectrode revealed that both strains grew at the oxic-anoxic interface of the gradients and tracked the O2 minima when subjected to higher O2 concentrations, suggesting they are microaerobes. Phylogenetically the two strains formed a novel lineage within the gamma Proteobacteria. They were very closely related to each other and were equally closely related to PVB OTU 1, a phylotype obtained from an iron-rich hydrothermal vent system at the Loihi Seamount in the Pacific Ocean, and SPB OTU 1, a phylotype obtained from permafrost soil in Siberia. Their closest cultivated relative was Stenotrophomonas maltophilia. In total, this evidence suggests ES-1 and ES-2 are members of a previously untapped group of putatively lithotrophic, unicellular iron-oxidizing bacteria.

Full Text

The Full Text of this article is available as a PDF (849.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brune A., Emerson D., Breznak J. A. The Termite Gut Microflora as an Oxygen Sink: Microelectrode Determination of Oxygen and pH Gradients in Guts of Lower and Higher Termites. Appl Environ Microbiol. 1995 Jul;61(7):2681–2687. doi: 10.1128/aem.61.7.2681-2687.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehrenreich A., Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol. 1994 Dec;60(12):4517–4526. doi: 10.1128/aem.60.12.4517-4526.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Emerson D., Revsbech N. P. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies. Appl Environ Microbiol. 1994 Nov;60(11):4022–4031. doi: 10.1128/aem.60.11.4022-4031.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Emerson D., Revsbech N. P. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Laboratory Studies. Appl Environ Microbiol. 1994 Nov;60(11):4032–4038. doi: 10.1128/aem.60.11.4032-4038.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hafenbradl D., Keller M., Dirmeier R., Rachel R., Rossnagel P., Burggraf S., Huber H., Stetter K. O. Ferroglobus placidus gen. nov., sp. nov., A novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol. 1996 Nov;166(5):308–314. doi: 10.1007/s002030050388. [DOI] [PubMed] [Google Scholar]
  6. Hallbeck L., Ståhl F., Pedersen K. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol. 1993 Jul;139(7):1531–1535. doi: 10.1099/00221287-139-7-1531. [DOI] [PubMed] [Google Scholar]
  7. Juhnke M. E., Mathre D. E., Sands D. C. Identification and characterization of rhizosphere-competent bacteria of wheat. Appl Environ Microbiol. 1987 Dec;53(12):2793–2799. doi: 10.1128/aem.53.12.2793-2799.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KUCERA S., WOLFE R. S. A selective enrichment method for Gallionella ferruginea. J Bacteriol. 1957 Sep;74(3):344–349. doi: 10.1128/jb.74.3.344-349.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kopczynski E. D., Bateson M. M., Ward D. M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. doi: 10.1128/aem.60.2.746-748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lovley D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 1991 Jun;55(2):259–287. doi: 10.1128/mr.55.2.259-287.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The Ribosomal Database Project (RDP). Nucleic Acids Res. 1996 Jan 1;24(1):82–85. doi: 10.1093/nar/24.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moyer C. L., Dobbs F. C., Karl D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. doi: 10.1128/aem.60.3.871-879.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moyer C. L., Dobbs F. C., Karl D. M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1995 Apr;61(4):1555–1562. doi: 10.1128/aem.61.4.1555-1562.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES