Abstract
A gel-stabilized gradient method that employed opposing gradients of Fe2+ and O2 was used to isolate and characterize two new Fe-oxidizing bacteria from a neutral pH, Fe(2+)-containing groundwater in Michigan. Two separate enrichment cultures were obtained, and in each the cells grew in a distinct, rust-colored band in the gel at the oxic-anoxic interface. The cells were tightly associated with the ferric hydroxides. Repeated serial dilutions of both enrichments resulted in the isolation of two axenic strains, ES-1 and ES-2. The cultures were judged pure based on (i) growth from single colonies in tubes at dilutions of 10(-7) (ES-2) (ES-2) and 10(-8) (ES-1); (ii) uniform cell morphologies, i.e., ES-1 was a motile long thin, bent, or S-shaped rod and ES-2 was a shorter curved rod; and (iii) no growth on a heterotrophic medium. Strain ES-1 grew to a density of 10(8) cells/ml on FeS with a doubling time of 8 h. Strain ES-2 grew to a density of 5 x 10(7) cells/ml with a doubling time of 12.5 h. Both strains also grew on FeCO3. Neither strain grew without Fe2+, nor did they grow with glucose, pyruvate, acetate, Mn, or H2S as an electron donor. Studies with an oxygen microelectrode revealed that both strains grew at the oxic-anoxic interface of the gradients and tracked the O2 minima when subjected to higher O2 concentrations, suggesting they are microaerobes. Phylogenetically the two strains formed a novel lineage within the gamma Proteobacteria. They were very closely related to each other and were equally closely related to PVB OTU 1, a phylotype obtained from an iron-rich hydrothermal vent system at the Loihi Seamount in the Pacific Ocean, and SPB OTU 1, a phylotype obtained from permafrost soil in Siberia. Their closest cultivated relative was Stenotrophomonas maltophilia. In total, this evidence suggests ES-1 and ES-2 are members of a previously untapped group of putatively lithotrophic, unicellular iron-oxidizing bacteria.
Full Text
The Full Text of this article is available as a PDF (849.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brune A., Emerson D., Breznak J. A. The Termite Gut Microflora as an Oxygen Sink: Microelectrode Determination of Oxygen and pH Gradients in Guts of Lower and Higher Termites. Appl Environ Microbiol. 1995 Jul;61(7):2681–2687. doi: 10.1128/aem.61.7.2681-2687.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenreich A., Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol. 1994 Dec;60(12):4517–4526. doi: 10.1128/aem.60.12.4517-4526.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerson D., Revsbech N. P. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies. Appl Environ Microbiol. 1994 Nov;60(11):4022–4031. doi: 10.1128/aem.60.11.4022-4031.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerson D., Revsbech N. P. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Laboratory Studies. Appl Environ Microbiol. 1994 Nov;60(11):4032–4038. doi: 10.1128/aem.60.11.4032-4038.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hafenbradl D., Keller M., Dirmeier R., Rachel R., Rossnagel P., Burggraf S., Huber H., Stetter K. O. Ferroglobus placidus gen. nov., sp. nov., A novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol. 1996 Nov;166(5):308–314. doi: 10.1007/s002030050388. [DOI] [PubMed] [Google Scholar]
- Hallbeck L., Ståhl F., Pedersen K. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol. 1993 Jul;139(7):1531–1535. doi: 10.1099/00221287-139-7-1531. [DOI] [PubMed] [Google Scholar]
- Juhnke M. E., Mathre D. E., Sands D. C. Identification and characterization of rhizosphere-competent bacteria of wheat. Appl Environ Microbiol. 1987 Dec;53(12):2793–2799. doi: 10.1128/aem.53.12.2793-2799.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUCERA S., WOLFE R. S. A selective enrichment method for Gallionella ferruginea. J Bacteriol. 1957 Sep;74(3):344–349. doi: 10.1128/jb.74.3.344-349.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopczynski E. D., Bateson M. M., Ward D. M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. doi: 10.1128/aem.60.2.746-748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 1991 Jun;55(2):259–287. doi: 10.1128/mr.55.2.259-287.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The Ribosomal Database Project (RDP). Nucleic Acids Res. 1996 Jan 1;24(1):82–85. doi: 10.1093/nar/24.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyer C. L., Dobbs F. C., Karl D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. doi: 10.1128/aem.60.3.871-879.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyer C. L., Dobbs F. C., Karl D. M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1995 Apr;61(4):1555–1562. doi: 10.1128/aem.61.4.1555-1562.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]