Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4800–4806. doi: 10.1128/aem.63.12.4800-4806.1997

Lysine-overproducing mutants of Saccharomyces cerevisiae baker's yeast isolated in continuous culture.

J M Gasent-Ramírez 1, T Benítez 1
PMCID: PMC168803  PMID: 9406398

Abstract

Saccharomyces cerevisiae baker's yeast mutants which produce 3 to 17 times as much lysine as the wild type, depending on the nitrogen source, have been selected. The baker's yeast strain was growth in a pH-regulated chemostat in minimal medium with proline as the nitrogen source, supplemented with increasing concentrations of the toxic analog of the lysine S-2-aminoethyl-L-cysteine (AEC). The lysine-overproducing mutants, which were isolated as AEC-resistant mutants, were also resistant to high external concentrations of lysine and to alpha-aminoadipate and seemed to be affected in the lysine biosynthetic pathway but not in the biosynthetic pathways of other amino acids. Lysine overproduction by one of the mutants seemed to be due to, at least, the loss of repression of the homocitrate synthase encoded by the LYS20 gene. The mutant grew slower than the wild type, and its dough-raising capacity was reduced in in vitro assays, probably due to the toxic effects of lysine accumulation or of an intermediate produced in the pathway. This mutant can be added as a food supplement to enrich the nutritive qualities of bakery products, and its resistance to alpha-aminoadipate, AEC, and lysine can be used as a dominant marker.

Full Text

The Full Text of this article is available as a PDF (416.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Chen S., Brockenbrough J. S., Dove J. E., Aris J. P. Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. J Biol Chem. 1997 Apr 18;272(16):10839–10846. doi: 10.1074/jbc.272.16.10839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Codón A. C., Gasent-Ramírez J. M., Benítez T. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts. Appl Environ Microbiol. 1995 Feb;61(2):630–638. doi: 10.1128/aem.61.2.630-638.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  5. Gray G. S., Bhattacharjee J. K. Biosynthesis of lysine in Saccharomyces cerevisiae: regulation of homocitrate synthase in analogue-resistant mutants. J Gen Microbiol. 1976 Nov;97(1):117–120. doi: 10.1099/00221287-97-1-117. [DOI] [PubMed] [Google Scholar]
  6. Hoffmann W. Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J Biol Chem. 1985 Sep 25;260(21):11831–11837. [PubMed] [Google Scholar]
  7. Horecka J., Kinsey P. T., Sprague G. F., Jr Cloning and characterization of the Saccharomyces cerevisiae LYS7 gene: evidence for function outside of lysine biosynthesis. Gene. 1995 Aug 30;162(1):87–92. doi: 10.1016/0378-1119(95)00325-z. [DOI] [PubMed] [Google Scholar]
  8. Jauniaux J. C., Grenson M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem. 1990 May 31;190(1):39–44. doi: 10.1111/j.1432-1033.1990.tb15542.x. [DOI] [PubMed] [Google Scholar]
  9. Jiménez J., Benítez T. Selection of Ethanol-Tolerant Yeast Hybrids in pH-Regulated Continuous Culture. Appl Environ Microbiol. 1988 Apr;54(4):917–922. doi: 10.1128/aem.54.4.917-922.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kitamoto K., Yoshizawa K., Ohsumi Y., Anraku Y. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol. 1988 Jun;170(6):2683–2686. doi: 10.1128/jb.170.6.2683-2686.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitamoto K., Yoshizawa K., Ohsumi Y., Anraku Y. Mutants of Saccharomyces cerevisiae with defective vacuolar function. J Bacteriol. 1988 Jun;170(6):2687–2691. doi: 10.1128/jb.170.6.2687-2691.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Martínez P., Codón A. C., Pérez L., Benítez T. Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Yeast. 1995 Nov;11(14):1399–1411. doi: 10.1002/yea.320111408. [DOI] [PubMed] [Google Scholar]
  14. Messenguy F., Colin D., ten Have J. P. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem. 1980 Jul;108(2):439–447. doi: 10.1111/j.1432-1033.1980.tb04740.x. [DOI] [PubMed] [Google Scholar]
  15. Naumov G. I., Naumova E. S., Lantto R. A., Louis E. J., Korhola M. Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: electrophoretic karyotypes. Yeast. 1992 Aug;8(8):599–612. doi: 10.1002/yea.320080804. [DOI] [PubMed] [Google Scholar]
  16. Ramos F., Verhasselt P., Feller A., Peeters P., Wach A., Dubois E., Volckaert G. Identification of a gene encoding a homocitrate synthase isoenzyme of Saccharomyces cerevisiae. Yeast. 1996 Oct;12(13):1315–1320. doi: 10.1002/(SICI)1097-0061(199610)12:13%3C1315::AID-YEA20%3E3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  17. Ramos F., Wiame J. M. Mutation affecting the specific regulatory control of lysine biosynthetic enzymes in Saccharomyces cerevisiae. Mol Gen Genet. 1985;200(2):291–294. doi: 10.1007/BF00425438. [DOI] [PubMed] [Google Scholar]
  18. Rytka J. Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. J Bacteriol. 1975 Feb;121(2):562–570. doi: 10.1128/jb.121.2.562-570.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SAGISAKA S., SHIMURA K. Studies in lysine biosynthesis. IV. Mechanism of activation and reduction of alpha-aminoadipic acid. J Biochem. 1962 Sep;52:155–161. doi: 10.1093/oxfordjournals.jbchem.a127590. [DOI] [PubMed] [Google Scholar]
  20. Sinha A. K., Kurtz M., Bhattacharjee J. K. Effect of hydroxylysine on the biosynthesis of lysine in saccharomyces. J Bacteriol. 1971 Nov;108(2):715–719. doi: 10.1128/jb.108.2.715-719.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sychrova H., Chevallier M. R. Cloning and sequencing of the Saccharomyces cerevisiae gene LYP1 coding for a lysine-specific permease. Yeast. 1993 Jul;9(7):771–782. doi: 10.1002/yea.320090711. [DOI] [PubMed] [Google Scholar]
  22. Tucci A. F., Ceci L. N. Control of lysine biosynthesis in yeast. Arch Biochem Biophys. 1972 Dec;153(2):751–754. doi: 10.1016/0003-9861(72)90394-3. [DOI] [PubMed] [Google Scholar]
  23. Tucci A. F., Ceci L. N. Homocitrate synthase from yeast. Arch Biochem Biophys. 1972 Dec;153(2):742–750. doi: 10.1016/0003-9861(72)90393-1. [DOI] [PubMed] [Google Scholar]
  24. Urrestarazu L. A., Borell C. W., Bhattacharjee J. K. General and specific controls of lysine biosynthesis in Saccharomyces cerevisiae. Curr Genet. 1985;9(5):341–344. doi: 10.1007/BF00421603. [DOI] [PubMed] [Google Scholar]
  25. Watson T. G. Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. J Gen Microbiol. 1976 Oct;96(2):263–268. doi: 10.1099/00221287-96-2-263. [DOI] [PubMed] [Google Scholar]
  26. Winston M. K., Bhattacharjee J. K. Biosynthetic and regulatory role of lys9 mutants of Saccharomyces cerevisiae. Curr Genet. 1987;11(5):393–398. doi: 10.1007/BF00378182. [DOI] [PubMed] [Google Scholar]
  27. Winston M. K., Bhattacharjee J. K. Growth inhibition by alpha-aminoadipate and reversal of the effect by specific amino acid supplements in Saccharomyces cerevisiae. J Bacteriol. 1982 Nov;152(2):874–879. doi: 10.1128/jb.152.2.874-879.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zaret K. S., Sherman F. alpha-Aminoadipate as a primary nitrogen source for Saccharomyces cerevisiae mutants. J Bacteriol. 1985 May;162(2):579–583. doi: 10.1128/jb.162.2.579-583.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES