Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4812–4817. doi: 10.1128/aem.63.12.4812-4817.1997

Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium lines as evaluated in situ on soft cheese.

I Eppert 1, N Valdés-Stauber 1, H Götz 1, M Busse 1, S Scherer 1
PMCID: PMC168805  PMID: 9406400

Abstract

The undefined microbial floras derived from the surface of ripe cheese which are used for the ripening of commercial red smear cheeses have a strong impact on the growth of Listeria spp. In some cases, these microbial consortia inhibit Listeria almost completely. From such undefined industrial cheese-ripening floras, linocin M18-producing (lin+) (N. Valdés-Stauber and S. Scherer, Appl. Environ. Microbiol. 60:3809-3814, 1994) and -nonproducing Brevibacterium linens strains were isolated and used as single-strain starter cultures on model red smear cheeses to evaluate their potential inhibitory effects on Listeria strains in situ. On cheeses ripened with lin+ strains, a growth reduction of L. ivanovii and L. monocytogenes of 1 to 2 log units was observed compared to cheeses ripened with lin strains. Linocin M18 activity was detected in cheeses ripened with lin+ strains but was not found in those ripened with lin strains. We suggest that production of linocin M18 contributes to the growth reduction of Listeria observed on model red smear cheeses but is unsufficient to explain the almost complete inhibition of Listeria caused by some undefined microbial floras derived from the surface of ripe cheeses.

Full Text

The Full Text of this article is available as a PDF (264.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cuer A., Dauphin G., Kergomard A., Dumont J. P., Adda J. Production of S-Methylthioacetate by Brevibacterium linens. Appl Environ Microbiol. 1979 Aug;38(2):332–334. doi: 10.1128/aem.38.2.332-334.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ferchichi M., Hemme D., Nardi M., Pamboukdjian N. Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. J Gen Microbiol. 1985 Apr;131(4):715–723. doi: 10.1099/00221287-131-4-715. [DOI] [PubMed] [Google Scholar]
  3. Foegeding P. M., Thomas A. B., Pilkington D. H., Klaenhammer T. R. Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl Environ Microbiol. 1992 Mar;58(3):884–890. doi: 10.1128/aem.58.3.884-890.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gagliano V. J., Hinsdill R. D. Characterization of a Staphylococcus aureus bacteriocin. J Bacteriol. 1970 Oct;104(1):117–125. doi: 10.1128/jb.104.1.117-125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jetten A. M., Vogels G. D., de Windt F. Production and purification of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):235–242. doi: 10.1128/jb.112.1.235-242.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Joerger M. C., Klaenhammer T. R. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986 Aug;167(2):439–446. doi: 10.1128/jb.167.2.439-446.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Loessner M. J. Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl Environ Microbiol. 1991 Mar;57(3):882–884. doi: 10.1128/aem.57.3.882-884.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Luchansky J. B., Glass K. A., Harsono K. D., Degnan A. J., Faith N. G., Cauvin B., Baccus-Taylor G., Arihara K., Bater B., Maurer A. J. Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl Environ Microbiol. 1992 Sep;58(9):3053–3059. doi: 10.1128/aem.58.9.3053-3059.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maisnier-Patin S., Richard J. Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium. Appl Environ Microbiol. 1995 May;61(5):1847–1852. doi: 10.1128/aem.61.5.1847-1852.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muriana P. M., Klaenhammer T. R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol. 1991 Jan;57(1):114–121. doi: 10.1128/aem.57.1.114-121.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ryan M. P., Rea M. C., Hill C., Ross R. P. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol. 1996 Feb;62(2):612–619. doi: 10.1128/aem.62.2.612-619.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ryser E. T., Maisnier-Patin S., Gratadoux J. J., Richard J. Isolation and identification of cheese-smear bacteria inhibitory to Listeria spp. Int J Food Microbiol. 1994 Feb;21(3):237–246. doi: 10.1016/0168-1605(94)90030-2. [DOI] [PubMed] [Google Scholar]
  13. Schillinger U., Kaya M., Lücke F. K. Behaviour of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake. J Appl Bacteriol. 1991 Jun;70(6):473–478. doi: 10.1111/j.1365-2672.1991.tb02743.x. [DOI] [PubMed] [Google Scholar]
  14. Sulzer G., Busse M. Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances. Int J Food Microbiol. 1991 Dec;14(3-4):287–296. doi: 10.1016/0168-1605(91)90120-e. [DOI] [PubMed] [Google Scholar]
  15. Valdes-Stauber N., Götz H., Busse M. Antagonistic effect of coryneform bacteria from red smear cheese against Listeria species. Int J Food Microbiol. 1991 Jun;13(2):119–130. doi: 10.1016/0168-1605(91)90054-s. [DOI] [PubMed] [Google Scholar]
  16. Valdes-Stauber N., Scherer S. Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18. Appl Environ Microbiol. 1996 Apr;62(4):1283–1286. doi: 10.1128/aem.62.4.1283-1286.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Valdés-Stauber N., Scherer S. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol. 1994 Oct;60(10):3809–3814. doi: 10.1128/aem.60.10.3809-3814.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Valdés-Stauber N., Scherer S., Seiler H. Identification of yeasts and coryneform bacteria from the surface microflora of brick cheeses. Int J Food Microbiol. 1997 Feb;34(2):115–129. doi: 10.1016/s0168-1605(96)01171-3. [DOI] [PubMed] [Google Scholar]
  19. Wan J., Harmark K., Davidson B. E., Hillier A. J., Gordon J. B., Wilcock A., Hickey M. W., Coventry M. J. Inhibition of Listeria monocytogenes by piscicolin 126 in milk and Camembert cheese manufactured with a thermophilic starter. J Appl Microbiol. 1997 Mar;82(3):273–280. doi: 10.1046/j.1365-2672.1997.00349.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES