Abstract
A chloride-inducible promoter previously isolated from the chromosome of Lactococcus lactis (J. W. Sanders, G. Venema, J. Kok, and K. Leenhouts, Mol. Gen. Genet., in press) was exploited for the inducible expression of homologous and heterologous genes. An expression cassette consisting of the positive-regulator gene gadR, the chloride-inducible promoter Pgad, and the translation initiation signals of gadC was amplified by PCR. The cassette was cloned upstream of Escherichia coli lacZ, the holin-lysin cassette (lytPR) of the lactococcal bacteriophage r1t, and the autolysin gene of L. lactis, acmA. Basal activity of Pgad resulted in a low level of expression of all three proteins. Growth in the presence of 0.5 M NaCl of a strain containing the gadC::lacZ fusion resulted in a 1,500-fold increase of beta-galactosidase activity. The background activity levels of LytPR and AcmA had no deleterious effects on cell growth, but induction of lysin expression by addition of 0.5 M NaCl resulted in inhibition of growth. Lysis was monitored by following the release of the cytoplasmic marker enzyme PepX. Released PepX activity was maximal at 1 day after induction of lytPR expression with 0.1 M NaCl. Induction of acmA expression resulted in slower release of PepX from the cells. The presence of the inducing agent NaCl resulted in the stabilization of osmotically fragile cells.
Full Text
The Full Text of this article is available as a PDF (603.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Buist G., Karsens H., Nauta A., van Sinderen D., Venema G., Kok J. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol. 1997 Jul;63(7):2722–2728. doi: 10.1128/aem.63.7.2722-2728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buist G., Kok J., Leenhouts K. J., Dabrowska M., Venema G., Haandrikman A. J. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol. 1995 Mar;177(6):1554–1563. doi: 10.1128/jb.177.6.1554-1563.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickely F., Nilsson D., Hansen E. B., Johansen E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol. 1995 Mar;15(5):839–847. doi: 10.1111/j.1365-2958.1995.tb02354.x. [DOI] [PubMed] [Google Scholar]
- Gasson M. J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. doi: 10.1128/jb.154.1.1-9.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holo H., Nes I. F. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. doi: 10.1128/aem.55.12.3119-3123.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuipers O. P., Beerthuyzen M. M., de Ruyter P. G., Luesink E. J., de Vos W. M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 1995 Nov 10;270(45):27299–27304. doi: 10.1074/jbc.270.45.27299. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol. 1995 Dec;177(24):7011–7018. doi: 10.1128/jb.177.24.7011-7018.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leenhouts K., Buist G., Bolhuis A., ten Berge A., Kiel J., Mierau I., Dabrowska M., Venema G., Kok J. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet. 1996 Nov 27;253(1-2):217–224. doi: 10.1007/s004380050315. [DOI] [PubMed] [Google Scholar]
- MacCormick C. A., Griffin H. G., Gasson M. J. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett. 1995 Mar 15;127(1-2):105–109. doi: 10.1111/j.1574-6968.1995.tb07457.x. [DOI] [PubMed] [Google Scholar]
- Maguin E., Duwat P., Hege T., Ehrlich D., Gruss A. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992 Sep;174(17):5633–5638. doi: 10.1128/jb.174.17.5633-5638.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Sullivan D. J., Walker S. A., West S. G., Klaenhammer T. R. Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology (N Y) 1996 Jan;14(1):82–87. doi: 10.1038/nbt0196-82. [DOI] [PubMed] [Google Scholar]
- Ostlie H. M., Vegarud G., Langsrud T. Autolysis of lactococci: detection of lytic enzymes by polyacrylamide gel electrophoresis and characterization in buffer systems. Appl Environ Microbiol. 1995 Oct;61(10):3598–3603. doi: 10.1128/aem.61.10.3598-3603.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne J., MacCormick C. A., Griffin H. G., Gasson M. J. Exploitation of a chromosomally integrated lactose operon for controlled gene expression in Lactococcus lactis. FEMS Microbiol Lett. 1996 Feb 1;136(1):19–24. doi: 10.1016/0378-1097(95)00474-2. [DOI] [PubMed] [Google Scholar]
- Platteeuw C., van Alen-Boerrigter I., van Schalkwijk S., de Vos W. M. Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol. 1996 Mar;62(3):1008–1013. doi: 10.1128/aem.62.3.1008-1013.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells J. M., Wilson P. W., Norton P. M., Gasson M. J., Le Page R. W. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 1993 Jun;8(6):1155–1162. doi: 10.1111/j.1365-2958.1993.tb01660.x. [DOI] [PubMed] [Google Scholar]
- Young R., Bläsi U. Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev. 1995 Aug;17(1-2):191–205. doi: 10.1111/j.1574-6976.1995.tb00202.x. [DOI] [PubMed] [Google Scholar]
- Zabarovsky E. R., Winberg G. High efficiency electroporation of ligated DNA into bacteria. Nucleic Acids Res. 1990 Oct 11;18(19):5912–5912. doi: 10.1093/nar/18.19.5912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Ruyter P. G., Kuipers O. P., de Vos W. M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol. 1996 Oct;62(10):3662–3667. doi: 10.1128/aem.62.10.3662-3667.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Asseldonk M., Rutten G., Oteman M., Siezen R. J., de Vos W. M., Simons G. Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene. 1990 Oct 30;95(1):155–160. doi: 10.1016/0378-1119(90)90428-t. [DOI] [PubMed] [Google Scholar]
- van Rooijen R. J., Gasson M. J., de Vos W. M. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol. 1992 Apr;174(7):2273–2280. doi: 10.1128/jb.174.7.2273-2280.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Guchte M., Kok J., Venema G. Distance-dependent translational coupling and interference in Lactococcus lactis. Mol Gen Genet. 1991 May;227(1):65–71. doi: 10.1007/BF00260708. [DOI] [PubMed] [Google Scholar]