Abstract
The purpose of this study was to determine the metabolic activity of Pseudomonas fluorescens DF57 in the barley rhizosphere and to assess whether sufficient phosphate was available to the bacterium. Hence, two DF57 reporter strains carrying chromosomal luxAB gene fusions were introduced into the rhizosphere. Strain DF57-40E7 expressed luxAB constitutively, making bioluminescence dependent upon the metabolic activity of the cells under defined assay conditions. The DF57-P2 reporter strain responded to phosphate limitation, and the luxAB gene fusion was controlled by a promoter containing regulatory sequences characteristic of members of the phosphate (Pho) regulon. DF57 generally had higher metabolic activity in a gnotobiotic rhizosphere than in the corresponding bulk soil. Within the rhizosphere the distribution of metabolic activity along the root differed between the rhizosphere soil and the rhizoplane, suggesting that growth conditions may differ between these two habitats. The DF57-P2 reporter strain encountered phosphate limitation in a gnotobiotic rhizosphere but not in a natural rhizosphere. This difference in phosphate availability seemed to be due to the indigenous microbial population, as DF57-P2 did not report phosphate limitation when established in the rhizosphere of plants in sterilized soil amended with indigenous microorganisms.
Full Text
The Full Text of this article is available as a PDF (920.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borodovsky M., Rudd K. E., Koonin E. V. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome. Nucleic Acids Res. 1994 Nov 11;22(22):4756–4767. doi: 10.1093/nar/22.22.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
- Cebolla A., Guzmán C., de Lorenzo V. Nondisruptive detection of activity of catabolic promoters of Pseudomonas putida with an antigenic surface reporter system. Appl Environ Microbiol. 1996 Jan;62(1):214–220. doi: 10.1128/aem.62.1.214-220.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filloux A., Bally M., Soscia C., Murgier M., Lazdunski A. Phosphate regulation in Pseudomonas aeruginosa: cloning of the alkaline phosphatase gene and identification of phoB- and phoR-like genes. Mol Gen Genet. 1988 Jun;212(3):510–513. doi: 10.1007/BF00330857. [DOI] [PubMed] [Google Scholar]
- Hancock R. E., Poole K., Benz R. Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol. 1982 May;150(2):730–738. doi: 10.1128/jb.150.2.730-738.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoben H. J., Somasegaran P. Comparison of the Pour, Spread, and Drop Plate Methods for Enumeration of Rhizobium spp. in Inoculants Made from Presterilized Peat. Appl Environ Microbiol. 1982 Nov;44(5):1246–1247. doi: 10.1128/aem.44.5.1246-1247.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Højberg O., Sørensen J. Microgradients of microbial oxygen consumption in a barley rhizosphere model system. Appl Environ Microbiol. 1993 Feb;59(2):431–437. doi: 10.1128/aem.59.2.431-437.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato J., Sakai Y., Nikata T., Ohtake H. Cloning and characterization of a Pseudomonas aeruginosa gene involved in the negative regulation of phosphate taxis. J Bacteriol. 1994 Sep;176(18):5874–5877. doi: 10.1128/jb.176.18.5874-5877.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura S., Makino K., Shinagawa H., Amemura M., Nakata A. Regulation of the phosphate regulon of Escherichia coli: characterization of the promoter of the pstS gene. Mol Gen Genet. 1989 Feb;215(3):374–380. doi: 10.1007/BF00427032. [DOI] [PubMed] [Google Scholar]
- Kragelund L., Nybroe O. Culturability and Expression of Outer Membrane Proteins during Carbon, Nitrogen, or Phosphorus Starvation of Pseudomonas fluorescens DF57 and Pseudomonas putida DF14. Appl Environ Microbiol. 1994 Aug;60(8):2944–2948. doi: 10.1128/aem.60.8.2944-2948.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loper J. E., Lindow S. E. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl Environ Microbiol. 1994 Jun;60(6):1934–1941. doi: 10.1128/aem.60.6.1934-1941.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino K., Shinagawa H., Amemura M., Kimura S., Nakata A., Ishihama A. Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol. 1988 Sep 5;203(1):85–95. doi: 10.1016/0022-2836(88)90093-9. [DOI] [PubMed] [Google Scholar]
- Mavingui P., Laguerre G., Berge O., Heulin T. Genetic and Phenotypic Diversity of Bacillus polymyxa in Soil and in the Wheat Rhizosphere. Appl Environ Microbiol. 1992 Jun;58(6):1894–1903. doi: 10.1128/aem.58.6.1894-1903.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meikle A., Killham K., Prosser J. I., Glover L. A. Luminometric measurement of population activity of genetically modified Pseudomonas fluorescens in the soil. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):217–220. doi: 10.1016/0378-1097(92)90029-n. [DOI] [PubMed] [Google Scholar]
- Norton J. M., Firestone M. K. Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings. Appl Environ Microbiol. 1991 Apr;57(4):1161–1167. doi: 10.1128/aem.57.4.1161-1167.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nyström T., Olsson R. M., Kjelleberg S. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol. 1992 Jan;58(1):55–65. doi: 10.1128/aem.58.1.55-65.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole K., Hancock R. E. Phosphate-starvation-induced outer membrane proteins of members of the families Enterobacteriaceae and Pseudomonodaceae: demonstration of immunological cross-reactivity with an antiserum specific for porin protein P of Pseudomonas aeruginosa. J Bacteriol. 1986 Mar;165(3):987–993. doi: 10.1128/jb.165.3.987-993.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siehnel R. J., Egli C., Hancock R. E. Polyphosphate-selective porin OprO of Pseudomonas aeruginosa: expression, purification and sequence. Mol Microbiol. 1992 Aug;6(16):2319–2326. doi: 10.1111/j.1365-2958.1992.tb01407.x. [DOI] [PubMed] [Google Scholar]
- Siehnel R., Martin N. L., Hancock R. E. Sequence and relatedness in other bacteria of the Pseudomonas aeruginosa oprP gene coding for the phosphate-specific porin P. Mol Microbiol. 1990 May;4(5):831–838. doi: 10.1111/j.1365-2958.1990.tb00653.x. [DOI] [PubMed] [Google Scholar]
- Silcock D. J., Waterhouse R. N., Glover L. A., Prosser J. I., Killham K. Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy. Appl Environ Microbiol. 1992 Aug;58(8):2444–2448. doi: 10.1128/aem.58.8.2444-2448.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West S. E., Iglewski B. H. Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res. 1988 Oct 11;16(19):9323–9335. doi: 10.1093/nar/16.19.9323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolk C. P., Cai Y., Panoff J. M. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5355–5359. doi: 10.1073/pnas.88.12.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Weger L. A., Dunbar P., Mahafee W. F., Lugtenberg B. J., Sayler G. S. Use of Bioluminescence Markers To Detect Pseudomonas spp. in the Rhizosphere. Appl Environ Microbiol. 1991 Dec;57(12):3641–3644. doi: 10.1128/aem.57.12.3641-3644.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Overbeek L. S., van Elsas J. D. Root Exudate-Induced Promoter Activity in Pseudomonas fluorescens Mutants in the Wheat Rhizosphere. Appl Environ Microbiol. 1995 Mar;61(3):890–898. doi: 10.1128/aem.61.3.890-898.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Peer Ron, Punte Helma L. M., de Weger Letty A., Schippers Bob. Characterization of Root Surface and Endorhizosphere Pseudomonads in Relation to Their Colonization of Roots. Appl Environ Microbiol. 1990 Aug;56(8):2462–2470. doi: 10.1128/aem.56.8.2462-2470.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]