Abstract
The main object of this study was to investigate the molecular basis for changes in the spectral sensitivity of the visual pigments of deep-sea fishes. The four teleost species studied, Hoplostethus mediterraneus, Cataetyx laticeps, Gonostoma elongatum and Histiobranchus bathybius, are phylogenetically distant from each other and live at depths ranging from 500 to almost 5000 m. A single fragment of the intronless rod opsin gene was PCR-amplified from each fish and sequenced. The wavelength of peak sensitivity for the rod visual pigments of the four deep-sea species varies from 483 nm in H. mediterraneus and G. elongatum to 468 nm in C. laticeps. Six amino acids at sites on the inner face of the chromophore-binding pocket formed by the seven transmembrane a-helices are identified as candidates for spectral tuning. Substitutions at these sites involve either a change of charge, or a gain or loss of a hydroxyl group. Two of these, at positions 83 and 292, are consistently substituted in the visual pigments of all four species and are likely to be responsible for the shortwave sensitivity of the pigments. Shifts to wavelengths shorter than 480 nm may involve substitution at one or more of the remaining four sites. None of the modifications found in the derived sequences of these opsins suggest functional adaptations, such as increased content of hydroxyl-bearing or proline residues, to resist denaturation by the elevated hydrostatic pressures of the deep sea. Phylogenetic evidence for the duplication of the rod opsin gene in the Anguilliform lineage is presented.
Full Text
The Full Text of this article is available as a PDF (545.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer S. N., Lythgoe J. N., Hall L. Rod opsin cDNA sequence from the sand goby (Pomatoschistus minutus) compared with those of other vertebrates. Proc Biol Sci. 1992 Apr 22;248(1321):19–25. doi: 10.1098/rspb.1992.0037. [DOI] [PubMed] [Google Scholar]
- Archer S., Hirano J. Absorbance spectra and molecular structure of the blue-sensitive rod visual pigment in the conger eel (Conger conger). Proc Biol Sci. 1996 Jun 22;263(1371):761–767. doi: 10.1098/rspb.1996.0114. [DOI] [PubMed] [Google Scholar]
- Archer S., Hope A., Partridge J. C. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Biol Sci. 1995 Dec 22;262(1365):289–295. doi: 10.1098/rspb.1995.0208. [DOI] [PubMed] [Google Scholar]
- Asenjo A. B., Rim J., Oprian D. D. Molecular determinants of human red/green color discrimination. Neuron. 1994 May;12(5):1131–1138. doi: 10.1016/0896-6273(94)90320-4. [DOI] [PubMed] [Google Scholar]
- Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg R. A., Prockop D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun. 1973 May 1;52(1):115–120. doi: 10.1016/0006-291x(73)90961-3. [DOI] [PubMed] [Google Scholar]
- Bowmaker J. K., Astell S., Hunt D. M., Mollon J. D. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991 Mar;156:1–19. doi: 10.1242/jeb.156.1.1. [DOI] [PubMed] [Google Scholar]
- Chan T., Lee M., Sakmar T. P. Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. J Biol Chem. 1992 May 15;267(14):9478–9480. [PubMed] [Google Scholar]
- Cohen G. B., Yang T., Robinson P. R., Oprian D. D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry. 1993 Jun 15;32(23):6111–6115. doi: 10.1021/bi00074a024. [DOI] [PubMed] [Google Scholar]
- DeCaluwé G. L., Bovee-Geurts P. H., Rath P., Rothschild K. J., de Grip W. J. Effect of carboxyl mutations on functional properties of bovine rhodopsin. Biophys Chem. 1995 Sep-Oct;56(1-2):79–87. doi: 10.1016/0301-4622(95)00018-s. [DOI] [PubMed] [Google Scholar]
- Fitzgibbon J., Hope A., Slobodyanyuk S. J., Bellingham J., Bowmaker J. K., Hunt D. M. The rhodopsin-encoding gene of bony fish lacks introns. Gene. 1995 Oct 27;164(2):273–277. doi: 10.1016/0378-1119(95)00458-i. [DOI] [PubMed] [Google Scholar]
- Fontes C. M., Hazlewood G. P., Morag E., Hall J., Hirst B. H., Gilbert H. J. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J. 1995 Apr 1;307(Pt 1):151–158. doi: 10.1042/bj3070151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fröhlich E., Negishi K., Wagner H. J. The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish. Vis Neurosci. 1995 Mar-Apr;12(2):359–369. doi: 10.1017/s0952523800008038. [DOI] [PubMed] [Google Scholar]
- Hisatomi O., Iwasa T., Tokunaga F., Yasui A. Isolation and characterization of lamprey rhodopsin cDNA. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1125–1132. doi: 10.1016/0006-291x(91)91537-m. [DOI] [PubMed] [Google Scholar]
- Hubbard R., Sperling L. The colors of the visual pigment chromophores. Exp Eye Res. 1973 Dec 24;17(6):581–589. doi: 10.1016/0014-4835(73)90087-0. [DOI] [PubMed] [Google Scholar]
- Hunt D. M., Fitzgibbon J., Slobodyanyuk S. J., Bowmaker J. K. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res. 1996 May;36(9):1217–1224. doi: 10.1016/0042-6989(95)00228-6. [DOI] [PubMed] [Google Scholar]
- Johnson R. L., Grant K. B., Zankel T. C., Boehm M. F., Merbs S. L., Nathans J., Nakanishi K. Cloning and expression of goldfish opsin sequences. Biochemistry. 1993 Jan 12;32(1):208–214. doi: 10.1021/bi00052a027. [DOI] [PubMed] [Google Scholar]
- Karnik S. S., Khorana H. G. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem. 1990 Oct 15;265(29):17520–17524. [PubMed] [Google Scholar]
- Lee Y. E., Lowe S. E., Henrissat B., Zeikus J. G. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol. 1993 Sep;175(18):5890–5898. doi: 10.1128/jb.175.18.5890-5898.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merbs S. L., Nathans J. Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem Photobiol. 1993 Nov;58(5):706–710. doi: 10.1111/j.1751-1097.1993.tb04956.x. [DOI] [PubMed] [Google Scholar]
- Nakayama T. A., Khorana H. G. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem. 1991 Mar 5;266(7):4269–4275. [PubMed] [Google Scholar]
- Nathans J. Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry. 1990 Jan 30;29(4):937–942. doi: 10.1021/bi00456a013. [DOI] [PubMed] [Google Scholar]
- Neitz M., Neitz J., Jacobs G. H. Spectral tuning of pigments underlying red-green color vision. Science. 1991 May 17;252(5008):971–974. doi: 10.1126/science.1903559. [DOI] [PubMed] [Google Scholar]
- Partridge J. C., Shand J., Archer S. N., Lythgoe J. N., van Groningen-Luyben W. A. Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A. 1989 Jan;164(4):513–529. doi: 10.1007/BF00610445. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somero G. N. Adaptations to high hydrostatic pressure. Annu Rev Physiol. 1992;54:557–577. doi: 10.1146/annurev.ph.54.030192.003013. [DOI] [PubMed] [Google Scholar]
- Somero G. N. Biochemical ecology of deep-sea animals. Experientia. 1992 Jun 15;48(6):537–543. doi: 10.1007/BF01920236. [DOI] [PubMed] [Google Scholar]
- Swezey R. R., Somero G. N. Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry. 1982 Aug 31;21(18):4496–4503. doi: 10.1021/bi00261a047. [DOI] [PubMed] [Google Scholar]
- Tsai H. J., Shih S. R., Kuo C. M., Li L. K. Molecular cloning of the common carp (Cyprinus carpio) rhodopsin cDNA. Comp Biochem Physiol B Biochem Mol Biol. 1994 Sep;109(1):81–88. doi: 10.1016/0305-0491(94)90144-9. [DOI] [PubMed] [Google Scholar]
- Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
- Williams A. J., Hunt D. M., Bowmaker J. K., Mollon J. D. The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. EMBO J. 1992 Jun;11(6):2039–2045. doi: 10.1002/j.1460-2075.1992.tb05261.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama R., Knox B. E., Yokoyama S. Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift. Invest Ophthalmol Vis Sci. 1995 Apr;36(5):939–945. [PubMed] [Google Scholar]