Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Feb 22;264(1379):245–251. doi: 10.1098/rspb.1997.0035

Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens.

T Guillemaud 1, N Pasteur 1, F Rousset 1
PMCID: PMC1688252  PMID: 9061971

Abstract

Reproductive incompatibilities called cytoplasmic incompatibilities are known to affect a large number of arthropod species and are mediated by Wolbachia, a maternally transmitted microorganism. The crossing relationships between strains of potential hosts define their incompatibility types and it is generally assumed that differences between strains of Wolbachia induce different crossing types. Among all the described host species, the mosquito, Culex pipiens, displays the greatest variability of cytoplasmic incompatibility crossing types. We analysed mitochondrial and bacterial DNA variability in Culex pipiens in order to investigate some possible causes of incompatibility crossing type variability. We sequenced fragments of the ftsZ gene, and the A + T-rich control region of the mtDNA. We also sequenced the second subunit of the mitochondrial cytochrome oxidase (COII) gene, in Culex pipiens and a closely related species, C. torrentium, in order to verify the usefulness of the A + T-rich region for the present purposes. No variability was found in the Wolbachia ftsZ gene fragment, and very limited variation of the mitochondrial marker whatever the compatibility type or the origin of the host. A low variability was found in the A + T-rich region and comparison of divergence of the A + T-rich region and COII gene between C. pipiens and C. torrentium did not reveal any special constraints affecting this region. In contrast to observations in other host species, variability of incompatibility crossing types is not due to multiple infections by distantly related Wolbachia strains.

Full Text

The Full Text of this article is available as a PDF (207.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard J. W., Kreitman M. Unraveling selection in the mitochondrial genome of Drosophila. Genetics. 1994 Nov;138(3):757–772. doi: 10.1093/genetics/138.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barr A. R. Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens L. Nature. 1980 Jan 3;283(5742):71–72. doi: 10.1038/283071a0. [DOI] [PubMed] [Google Scholar]
  3. Beard C. B., Hamm D. M., Collins F. H. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol. 1993;2(2):103–124. doi: 10.1111/j.1365-2583.1993.tb00131.x. [DOI] [PubMed] [Google Scholar]
  4. Ben Cheikh H., Pasteur N. Resistance to temephos, an organophosphorous insecticide, in Culex pipiens from Tunisia, North Africa. J Am Mosq Control Assoc. 1993 Sep;9(3):335–337. [PubMed] [Google Scholar]
  5. Bourguet D., Raymond M., Bisset J., Pasteur N., Arpagaus M. Duplication of the Ace.1 locus in Culex pipiens mosquitoes from the Caribbean. Biochem Genet. 1996 Oct;34(9-10):351–362. doi: 10.1007/BF00554410. [DOI] [PubMed] [Google Scholar]
  6. Boyce T. M., Zwick M. E., Aquadro C. F. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics. 1989 Dec;123(4):825–836. doi: 10.1093/genetics/123.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyle L., O'Neill S. L., Robertson H. M., Karr T. L. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science. 1993 Jun 18;260(5115):1796–1799. doi: 10.1126/science.8511587. [DOI] [PubMed] [Google Scholar]
  8. Braig H. R., Guzman H., Tesh R. B., O'Neill S. L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 1994 Feb 3;367(6462):453–455. doi: 10.1038/367453a0. [DOI] [PubMed] [Google Scholar]
  9. Breeuwer J. A., Stouthamer R., Barns S. M., Pelletier D. A., Weisburg W. G., Werren J. H. Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol. 1992;1(1):25–36. doi: 10.1111/j.1365-2583.1993.tb00074.x. [DOI] [PubMed] [Google Scholar]
  10. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  11. Brower A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6491–6495. doi: 10.1073/pnas.91.14.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Caccone A., Garcia B. A., Powell J. R. Evolution of the mitochondrial DNA control region in the Anopheles gambiae complex. Insect Mol Biol. 1996 Feb;5(1):51–59. doi: 10.1111/j.1365-2583.1996.tb00040.x. [DOI] [PubMed] [Google Scholar]
  13. Chevillon C., Eritja R., Pasteur N., Raymond M. Commensalism, adaptation and gene flow: mosquitoes of the Culex pipiens complex in different habitats. Genet Res. 1995 Oct;66(2):147–157. doi: 10.1017/s0016672300034492. [DOI] [PubMed] [Google Scholar]
  14. GHELELOVITCH S. Sur le déterminisme génétique de la stérilité dans les croisements entre différentes souches de Culex autogenicus Roubaud. C R Hebd Seances Acad Sci. 1952 Jun 9;234(24):2386–2388. [PubMed] [Google Scholar]
  15. Guillemaud T., Rooker S., Pasteur N., Raymond M. Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data. Heredity (Edinb) 1996 Nov;77(Pt 5):535–543. doi: 10.1038/hdy.1996.181. [DOI] [PubMed] [Google Scholar]
  16. Ho C. M., Liu Y. M., Wei Y. H., Hu S. T. Gene for cytochrome c oxidase subunit II in the mitochondrial DNA of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1995 Mar;32(2):174–180. doi: 10.1093/jmedent/32.2.174. [DOI] [PubMed] [Google Scholar]
  17. Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holden P. R., Brookfield J. F., Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet. 1993 Aug;240(2):213–220. doi: 10.1007/BF00277059. [DOI] [PubMed] [Google Scholar]
  19. Jenkins T. M., Babcock C. S., Geiser D. M., Anderson W. W. Cytoplasmic incompatibility and mating preference in Colombian Drosophila pseudoobscura. Genetics. 1996 Jan;142(1):189–194. doi: 10.1093/genetics/142.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kambhampati S., Rai K. S. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome. 1991 Apr;34(2):288–292. doi: 10.1139/g91-046. [DOI] [PubMed] [Google Scholar]
  21. Laven H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature. 1967 Oct 28;216(5113):383–384. doi: 10.1038/216383a0. [DOI] [PubMed] [Google Scholar]
  22. Lewis D. L., Farr C. L., Farquhar A. L., Kaguni L. S. Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Mol Biol Evol. 1994 May;11(3):523–538. doi: 10.1093/oxfordjournals.molbev.a040132. [DOI] [PubMed] [Google Scholar]
  23. Magnin M., Pasteur N., Raymond M. Multiple incompatibilities within populations of Culex pipiens L. in southern France. Genetica. 1987 Oct 15;74(2):125–130. doi: 10.1007/BF00055223. [DOI] [PubMed] [Google Scholar]
  24. Miller B. R., Crabtree M. B., Savage H. M. Phylogeny of fourteen Culex mosquito species, including the Culex pipiens complex, inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol Biol. 1996 May;5(2):93–107. doi: 10.1111/j.1365-2583.1996.tb00044.x. [DOI] [PubMed] [Google Scholar]
  25. Monforte A., Barrio E., Latorre A. Characterization of the length polymorphism in the A + T-rich region of the Drosophila obscura group species. J Mol Evol. 1993 Mar;36(3):214–223. doi: 10.1007/BF00160476. [DOI] [PubMed] [Google Scholar]
  26. Monnerot M., Solignac M., Wolstenholme D. R. Discrepancy in divergence of the mitochondrial and nuclear genomes of Drosophila teissieri and Drosophila yakuba. J Mol Evol. 1990 Jun;30(6):500–508. doi: 10.1007/BF02101105. [DOI] [PubMed] [Google Scholar]
  27. Montchamp-Moreau C., Ferveur J. F., Jacques M. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics. 1991 Oct;129(2):399–407. doi: 10.1093/genetics/129.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
  30. Perrot-Minnot M. J., Guo L. R., Werren J. H. Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis: effects on compatibility. Genetics. 1996 Jun;143(2):961–972. doi: 10.1093/genetics/143.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rand D. M., Harrison R. G. Molecular population genetics of mtDNA size variation in crickets. Genetics. 1989 Mar;121(3):551–569. doi: 10.1093/genetics/121.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raymond M., Pasteur N., Georghiou G. P., Mellon R. B., Wirth M. C., Hawley M. K. Detoxification esterases new to California, USA, in organophosphate-resistant Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol. 1987 Jan;24(1):24–27. doi: 10.1093/jmedent/24.1.24. [DOI] [PubMed] [Google Scholar]
  33. Raymond M., Qiao C. L., Callaghan A. Esterase polymorphism in insecticide susceptible populations of the mosquito Culex pipiens. Genet Res. 1996 Feb;67(1):19–26. doi: 10.1017/s0016672300033449. [DOI] [PubMed] [Google Scholar]
  34. Riley M. A., Kaplan S. R., Veuille M. Nucleotide polymorphism at the xanthine dehydrogenase locus in Drosophila pseudoobscura. Mol Biol Evol. 1992 Jan;9(1):56–69. doi: 10.1093/oxfordjournals.molbev.a040708. [DOI] [PubMed] [Google Scholar]
  35. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992 Nov 23;250(1328):91–98. doi: 10.1098/rspb.1992.0135. [DOI] [PubMed] [Google Scholar]
  36. Rousset F., Solignac M. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6389–6393. doi: 10.1073/pnas.92.14.6389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rousset F., de Stordeur E. Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. Heredity (Edinb) 1994 Apr;72(Pt 4):325–331. doi: 10.1038/hdy.1994.48. [DOI] [PubMed] [Google Scholar]
  38. Schaeffer S. W., Miller E. L. Molecular population genetics of an electrophoretically monomorphic protein in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1992 Sep;132(1):163–178. doi: 10.1093/genetics/132.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Exp Parasitol. 1995 Nov;81(3):284–291. doi: 10.1006/expr.1995.1119. [DOI] [PubMed] [Google Scholar]
  40. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci. 1995 Sep 22;261(1362):325–330. doi: 10.1098/rspb.1995.0154. [DOI] [PubMed] [Google Scholar]
  41. Tamura K. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol Biol Evol. 1992 Sep;9(5):814–825. doi: 10.1093/oxfordjournals.molbev.a040763. [DOI] [PubMed] [Google Scholar]
  42. Taylor M. F., McKechnie S. W., Pierce N., Kreitman M. The lepidopteran mitochondrial control region: structure and evolution. Mol Biol Evol. 1993 Nov;10(6):1259–1272. doi: 10.1093/oxfordjournals.molbev.a040075. [DOI] [PubMed] [Google Scholar]
  43. Tsagkarakou A., Guillemaud T., Rousset F., Navajas M. Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). Insect Mol Biol. 1996 Aug;5(3):217–221. doi: 10.1111/j.1365-2583.1996.tb00057.x. [DOI] [PubMed] [Google Scholar]
  44. Turelli M., Hoffmann A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995 Aug;140(4):1319–1338. doi: 10.1093/genetics/140.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Venanzetti F., Cesaroni D., Mariottini P., Sbordoni V. Molecular phylogenies in Dolichopoda cave crickets and mtDNA rate calibration. Mol Phylogenet Evol. 1993 Dec;2(4):275–280. doi: 10.1006/mpev.1993.1026. [DOI] [PubMed] [Google Scholar]
  46. Veuille M., King L. M. Molecular basis of polymorphism at the esterase-5B locus in Drosophila pseudoobscura. Genetics. 1995 Sep;141(1):255–262. doi: 10.1093/genetics/141.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Werren J. H., Zhang W., Guo L. R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci. 1995 Jul 22;261(1360):55–63. doi: 10.1098/rspb.1995.0117. [DOI] [PubMed] [Google Scholar]
  48. Yen J. H., Barr A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature. 1971 Aug 27;232(5313):657–658. doi: 10.1038/232657a0. [DOI] [PubMed] [Google Scholar]
  49. Yen J. H., Barr A. R. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol. 1973 Sep;22(2):242–250. doi: 10.1016/0022-2011(73)90141-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES