Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Feb 22;264(1379):191–199. doi: 10.1098/rspb.1997.0027

Genetic variation for total fitness in Drosophila melanogaster.

K Fowler 1, C Semple 1, N H Barton 1, L Partridge 1
PMCID: PMC1688253  PMID: 9061969

Abstract

We measured the heterozygous effects on net fitness of a sample of 12 wild-type third chromosomes in D. melanogaster. Effects on fitness were assessed by competing the wild-type chromosomes against balancer chromosomes, to prevent the production of recombinants. The measurements were carried out in the population cage environment in which the life history had been evolving, in an undisturbed population with overlapping generations, and replicated measurements were made on each chromosome to control for confounding effects such as mutation accumulation. We found significant variation among the wild type chromosomes in their additive genetic effect on net fitness. The system provides an opportunity to obtain an accurate estimate of the distribution of heterozygous effects on net fitness, the contribution of different fitness components including male mating success, and the role of intra-chromosomal epistasis in fitness variation.

Full Text

The Full Text of this article is available as a PDF (626.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brittnacher J. G. Genetic variation and genetic load due to the male reproductive component of fitness in Drosophila. Genetics. 1981 Mar-Apr;97(3-4):719–730. doi: 10.1093/genetics/97.3-4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bundgaard J., Christiansen F. B. Dynamics of polymorphisms. I. Selection components in an experimental population of Drosophila melanogaster. Genetics. 1972 Jul;71(3):439–460. doi: 10.1093/genetics/71.3.439. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B., Charlesworth D. An experimental on recombination load in Drosophila melanogaster. Genet Res. 1975 Jun;25(3):267–274. doi: 10.1017/s001667230001569x. [DOI] [PubMed] [Google Scholar]
  4. Charlesworth B., Lapid A., Canada D. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genet Res. 1992 Oct;60(2):103–114. doi: 10.1017/s0016672300030792. [DOI] [PubMed] [Google Scholar]
  5. Felsenstein J. The theoretical population genetics of variable selection and migration. Annu Rev Genet. 1976;10:253–280. doi: 10.1146/annurev.ge.10.120176.001345. [DOI] [PubMed] [Google Scholar]
  6. Haymer D. S., Hartl D. L. The experimental assessment of fitness in Drosophila. I. Comparative measures of competitive reproductive success. Genetics. 1982 Nov;102(3):455–466. doi: 10.1093/genetics/102.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keightley P. D., Mackay T. F., Caballero A. Accounting for bias in estimates of the rate of polygenic mutation. Proc Biol Sci. 1993 Sep 22;253(1338):291–296. doi: 10.1098/rspb.1993.0116. [DOI] [PubMed] [Google Scholar]
  9. Kondrashov A. S., Houle D. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc Biol Sci. 1994 Dec 22;258(1353):221–227. doi: 10.1098/rspb.1994.0166. [DOI] [PubMed] [Google Scholar]
  10. Latter B. D., Mulley J. C. Genetic adaptation to captivity and inbreeding depression in small laboratory populations of Drosophila melanogaster. Genetics. 1995 Jan;139(1):255–266. doi: 10.1093/genetics/139.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  14. Sved J. A. An estimate of heterosis in Drosophila melanogaster. Genet Res. 1971 Aug;18(1):97–105. doi: 10.1017/s0016672300012453. [DOI] [PubMed] [Google Scholar]
  15. Sved J. A. Fitness of third chromosome homozygotes in Drosophila melanogaster. Genet Res. 1975 Apr;25(2):197–200. doi: 10.1017/s0016672300015603. [DOI] [PubMed] [Google Scholar]
  16. Wilton A. N., Sved J. A. X-chromosomal heterosis in Drosophila melanogaster. Genet Res. 1979 Dec;34(3):303–315. doi: 10.1017/s0016672300019534. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES