Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Mar 22;264(1380):355–360. doi: 10.1098/rspb.1997.0051

Genetic distinctiveness of a village population of house mice: relevance to speciation and chromosomal evolution.

S Fraguedakis-Tsolis 1, H C Hauffe 1, J B Searle 1
PMCID: PMC1688254  PMID: 9107050

Abstract

A population of house mice, Mus musculus domesticus, from the village of Migiondo was found to be genetically distinct from nearby populations in Upper Valtellina (Italian Alps). At the supernatant malic enzyme locus, Mod1, the only alleles found in Migiondo (c and n2) were virtually absent from the other populations in the valley, which were characterized by allele a. The extraordinary genetic distinctiveness of the Migiondo population is apparently the result of genetic drift, perhaps coupled with a founder event, and attests to the existence of nearly impenetrable geographic barriers around the village isolating it from other settlements only a few hundred metres away. The Mod1 features of the house mice in Migiondo are reminiscent of the characteristics of house mice on maritime islands. The genetic confirmation of the geographic isolation of Migiondo is of interest because there is evidence that this village may have been the site of recent speciation and extinction events. The data are also of significance given the phenomenal chromosomal variation in house mice from the vicinity of the Alps. It has frequently been proposed that genetic drift/founder events are of importance in the fixation of chromosomal rearrangements; this study provides the first direct evidence for their occurrence in alpine mouse populations.

Full Text

The Full Text of this article is available as a PDF (191.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph S., Klein J. Genetic variation of wild mouse populations in southern Germany. I. Cytogenetic study. Genet Res. 1983 Apr;41(2):117–134. doi: 10.1017/s0016672300021169. [DOI] [PubMed] [Google Scholar]
  2. Adolph S., Klein J. Robertsonian variation in Mus musculus from Central Europe Spain, and Scotland. J Hered. 1981 May-Jun;72(3):219–221. doi: 10.1093/oxfordjournals.jhered.a109478. [DOI] [PubMed] [Google Scholar]
  3. Berry R. J., Peters J. Heterogeneous heterozygosities in Mus musculus populations. Proc R Soc Lond B Biol Sci. 1977 Jul 20;197(1129):485–503. doi: 10.1098/rspb.1977.0082. [DOI] [PubMed] [Google Scholar]
  4. Britton-Davidian J., Nadeau J. H., Croset H., Thaler L. Genic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genet Res. 1989 Feb;53(1):29–44. doi: 10.1017/s0016672300027841. [DOI] [PubMed] [Google Scholar]
  5. Capanna E., Gropp A., Winking H., Noack G., Civitelli M. V. Robertsonian metacentrics in the mouse. Chromosoma. 1976 Nov 29;58(4):341–353. doi: 10.1007/BF00292842. [DOI] [PubMed] [Google Scholar]
  6. Cattanach B. M., Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985 Jun 6;315(6019):496–498. doi: 10.1038/315496a0. [DOI] [PubMed] [Google Scholar]
  7. Cattanach B. M., Moseley H. Nodisjunction and reduced fertility caused by the tobacco mouse metacentric chromosomes. Cytogenet Cell Genet. 1973;12(4):264–287. doi: 10.1159/000130462. [DOI] [PubMed] [Google Scholar]
  8. Eicher E. M. Sex and trinucleotide repeats. Nat Genet. 1994 Mar;6(3):221–223. doi: 10.1038/ng0394-221. [DOI] [PubMed] [Google Scholar]
  9. Eicher E. M., Washburn L. L., Whitney J. B., 3rd, Morrow K. E. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science. 1982 Aug 6;217(4559):535–537. doi: 10.1126/science.7089579. [DOI] [PubMed] [Google Scholar]
  10. Gropp A., Kolbus U. Exencephaly in the syndrome of trisomy no. 12 of the foetal mouse. Nature. 1974 May 10;249(453):145–147. doi: 10.1038/249145a0. [DOI] [PubMed] [Google Scholar]
  11. Gropp A., Tettenborn U., von Lehmann E. Chromosomenuntersuchungen bei der Tabakmaus (M. poschiavinus) und bei Tabakmaus-Hybriden. Experientia. 1969 Aug 15;25(8):875–876. doi: 10.1007/BF01897931. [DOI] [PubMed] [Google Scholar]
  12. Gropp A., Winking H., Redi C., Capanna E., Britton-Davidian J., Noack G. Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenet Cell Genet. 1982;34(1-2):67–77. doi: 10.1159/000131794. [DOI] [PubMed] [Google Scholar]
  13. Herbst E. W., Pluznik D. H., Gropp A., Uthgennant H. Trisomic hemopoietic stem cells of fetal origin restore hemopoiesis in lethally irradiated mice. Science. 1981 Mar 13;211(4487):1175–1177. doi: 10.1126/science.7466390. [DOI] [PubMed] [Google Scholar]
  14. Johnson F. M., Chasalow F., Lewis S. E., Barnett L., Lee C. Y. A null allele at the Mod-1 locus of the mouse. J Hered. 1981 Mar-Apr;72(2):134–136. doi: 10.1093/oxfordjournals.jhered.a109448. [DOI] [PubMed] [Google Scholar]
  15. Kelly J. K., Noor M. A. Speciation by reinforcement: a model derived from studies of Drosophila. Genetics. 1996 Jul;143(3):1485–1497. doi: 10.1093/genetics/143.3.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Searle J. B. Isoenzyme variation in the common shrew (Sorex araneus) in Britain, in relation to karyotype. Heredity (Edinb) 1985 Oct;55(Pt 2):175–180. doi: 10.1038/hdy.1985.89. [DOI] [PubMed] [Google Scholar]
  17. Shows T. B., Ruddle F. H. Malate dehydrogenase: evidence for tetrameric structure in Mus musculus. Science. 1968 Jun 21;160(3834):1356–1357. doi: 10.1126/science.160.3834.1356. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES