Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Mar 22;264(1380):361–366. doi: 10.1098/rspb.1997.0052

Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps.

M Schilthuizen 1, R Stouthamer 1
PMCID: PMC1688260  PMID: 9107051

Abstract

Complete parthenogenesis (thelytoky) in species of the parasitic wasp Trichogramma is usually caused by the cytoplasmically inherited bacterium Wolbachia. This symbiont induces gamete duplication, which, in these haplodiploid organisms, results in all-female broods. Antibiotic treatment "cures' this condition, restoring normal sexual reproduction. Phylogenetic analysis of Wolbachia has shown that, in contrast with the strains in other host organisms (where the symbiont also induces different reproductive alterations), those in Trichogramma form a monophyletic group. This might be an indication of symbiont-host cocladogenesis. To test this, we performed comparative molecular phylogenetics on 20 parthenogenetic Trichogramma cultures and their Wolbachiae. We conclude that there is, in fact, little evidence for cocladogenesis. Instead, the phylogenetic distribution of the symbionts appears to result from occasional horizontal transmission, which probably takes place inside the hosts of Trichogramma parasitoids (usually lepidopteran eggs). This study therefore suggests that parthenogenesis is not only curable, it can sometimes be contagious also.

Full Text

The Full Text of this article is available as a PDF (536.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr A. R. Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens L. Nature. 1980 Jan 3;283(5742):71–72. doi: 10.1038/283071a0. [DOI] [PubMed] [Google Scholar]
  2. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  3. Campbell B. C., Steffen-Campbell J. D., Werren J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol Biol. 1993;2(4):225–237. doi: 10.1111/j.1365-2583.1994.tb00142.x. [DOI] [PubMed] [Google Scholar]
  4. Hillis D. M., Huelsenbeck J. P. Signal, noise, and reliability in molecular phylogenetic analyses. J Hered. 1992 May-Jun;83(3):189–195. doi: 10.1093/oxfordjournals.jhered.a111190. [DOI] [PubMed] [Google Scholar]
  5. Holden P. R., Brookfield J. F., Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet. 1993 Aug;240(2):213–220. doi: 10.1007/BF00277059. [DOI] [PubMed] [Google Scholar]
  6. Hurst G. D., Hurst L. D., Majerus M. E. Evolutionary genetics. Selfish genes move sideways. Nature. 1992 Apr 23;356(6371):659–660. doi: 10.1038/356659a0. [DOI] [PubMed] [Google Scholar]
  7. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992 Nov 23;250(1328):91–98. doi: 10.1098/rspb.1992.0135. [DOI] [PubMed] [Google Scholar]
  9. Sappal N. P., Jeng R. S., Hubbes M., Liu F. Restriction fragment length polymorphisms in polymerase chain reaction amplified ribosomal DNAs of three Trichogramma (Hymenoptera: Trichogrammatidae) species. Genome. 1995 Jun;38(3):419–425. doi: 10.1139/g95-055. [DOI] [PubMed] [Google Scholar]
  10. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci. 1995 Sep 22;261(1362):325–330. doi: 10.1098/rspb.1995.0154. [DOI] [PubMed] [Google Scholar]
  11. Stouthamer R., Breeuwert J. A., Luck R. F., Werren J. H. Molecular identification of microorganisms associated with parthenogenesis. Nature. 1993 Jan 7;361(6407):66–68. doi: 10.1038/361066a0. [DOI] [PubMed] [Google Scholar]
  12. Stouthamer R., Luck R. F., Hamilton W. D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2424–2427. doi: 10.1073/pnas.87.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Torres-Márquez M. E., Macías-Silva M., Vega-Segura A. Identification of a functional Gs protein in Euglena gracilis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1996 Nov;115(3):233–237. doi: 10.1016/s0742-8413(96)00105-3. [DOI] [PubMed] [Google Scholar]
  14. Wesson D. M., Porter C. H., Collins F. H. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol Phylogenet Evol. 1992 Dec;1(4):253–269. doi: 10.1016/1055-7903(92)90001-w. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES