Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Mar 22;264(1380):367–373. doi: 10.1098/rspb.1997.0053

Thyroid hormone regulates Na+ currents in cultured hippocampal neurons from postnatal rats.

O Potthoff 1, I D Dietzel 1
PMCID: PMC1688264  PMID: 9107052

Abstract

The causes for mental retardation due to perinatal hypothyroidism are not fully understood. Here we show that the most potent component of thyroid hormone, 3,5,3'-triiodo-L-thyronine (T3), selectively increases the density of voltage-activated Na+ currents in hippocampal neurons from newborn rats. Thus, the well known effects of thyroid hormone on energy expenditure and Na+/K+ ATPase activity could to some extent result from the enhanced Na+ influx through voltage-activated Na+ channels. In addition, a down-regulation of the Na+ current density in neurons could contribute to some of the neurological symptoms accompanying hypothyroidism, including slowing of mentation, of neuronal conduction velocities, the alpha rhythm of the electroencephalogram, and increased latencies of evoked potentials and reflexes.

Full Text

The Full Text of this article is available as a PDF (507.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Dolado M., Iglesias T., Rodríguez-Peña A., Bernal J., Muñoz A. Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Brain Res Mol Brain Res. 1994 Dec;27(2):249–257. doi: 10.1016/0169-328x(94)90007-8. [DOI] [PubMed] [Google Scholar]
  2. Aniello F., Couchie D., Bridoux A. M., Gripois D., Nunez J. Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4035–4039. doi: 10.1073/pnas.88.9.4035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atterwill C. K., Atkinson D. J., Bermudez I., Balazs R. Effect of thyroid hormone and serum on the development of Na+, K+-adenosine triphosphatase and associated ion fluxes in cultures from rat brain. Neuroscience. 1985 Jan;14(1):361–373. doi: 10.1016/0306-4522(85)90185-x. [DOI] [PubMed] [Google Scholar]
  4. Atterwill C. K., Kingsbury A., Nicholls J., Prince A. Development of markers for cholinergic neurones in re-aggregate cultures of foetal rat whole brain in serum-containing and serum-free media: effects of triiodothyronine (T3). Br J Pharmacol. 1984 Sep;83(1):89–102. doi: 10.1111/j.1476-5381.1984.tb10123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balázs R., Gallo V., Atterwill C. K., Kingsbury A. E., Jørgensen O. S. Does thyroid hormone influence the maturation of cerebellar granule neurones? Biomed Biochim Acta. 1985;44(10):1469–1482. [PubMed] [Google Scholar]
  6. Barish M. E. Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones. J Physiol. 1986 Jun;375:229–250. doi: 10.1113/jphysiol.1986.sp016114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beghi E., Delodovici M. L., Bogliun G., Crespi V., Paleari F., Gamba P., Capra M., Zarrelli M. Hypothyroidism and polyneuropathy. J Neurol Neurosurg Psychiatry. 1989 Dec;52(12):1420–1423. doi: 10.1136/jnnp.52.12.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
  9. Brewer G. J., Cotman C. W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 1989 Aug 7;494(1):65–74. doi: 10.1016/0006-8993(89)90144-3. [DOI] [PubMed] [Google Scholar]
  10. Brodie C., Sampson S. R. Characterization of thyroid hormone effects on Na channel synthesis in cultured skeletal myotubes: role of Ca2+. Endocrinology. 1989 Aug;125(2):842–849. doi: 10.1210/endo-125-2-842. [DOI] [PubMed] [Google Scholar]
  11. De Vries L. S., Heckmatt J. Z., Burrin J. M., Dubowitz L. M., Dubowitz V. Low serum thyroxine concentrations and neural maturation in preterm infants. Arch Dis Child. 1986 Sep;61(9):862–866. doi: 10.1136/adc.61.9.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Delange F., Heidemann P., Bourdoux P., Larsson A., Vigneri R., Klett M., Beckers C., Stubbe P. Regional variations of iodine nutrition and thyroid function during the neonatal period in Europe. Biol Neonate. 1986;49(6):322–330. doi: 10.1159/000242547. [DOI] [PubMed] [Google Scholar]
  13. Dudley S. C., Jr, Baumgarten C. M. Bursting of cardiac sodium channels after acute exposure to 3,5,3'-triiodo-L-thyronine. Circ Res. 1993 Aug;73(2):301–313. doi: 10.1161/01.res.73.2.301. [DOI] [PubMed] [Google Scholar]
  14. Dunn J. T. Iodine supplementation and the prevention of cretinism. Ann N Y Acad Sci. 1993 Mar 15;678:158–168. doi: 10.1111/j.1749-6632.1993.tb26119.x. [DOI] [PubMed] [Google Scholar]
  15. Dussault J. H., Ruel J. Thyroid hormones and brain development. Annu Rev Physiol. 1987;49:321–334. doi: 10.1146/annurev.ph.49.030187.001541. [DOI] [PubMed] [Google Scholar]
  16. Filipcik P., Saito H., Katsuki H. 3,5,3'-L-triiodothyronine promotes survival and axon elongation of embryonic rat septal neurons. Brain Res. 1994 May 30;647(1):148–152. doi: 10.1016/0006-8993(94)91410-9. [DOI] [PubMed] [Google Scholar]
  17. Fincham R. W., Cape C. A. Neuropathy in myxedema. A study of sensory nerve conduction in the upper extremities. Arch Neurol. 1968 Nov;19(5):464–466. doi: 10.1001/archneur.1968.00480050034002. [DOI] [PubMed] [Google Scholar]
  18. Foster R. E., Connors B. W., Waxman S. G. Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development. Brain Res. 1982 Mar;255(3):371–386. doi: 10.1016/0165-3806(82)90005-0. [DOI] [PubMed] [Google Scholar]
  19. Fulton B. P. Postnatal changes in conduction velocity and soma action potential parameters of rat dorsal root ganglion neurones. Neurosci Lett. 1987 Jan 14;73(2):125–130. doi: 10.1016/0304-3940(87)90005-x. [DOI] [PubMed] [Google Scholar]
  20. Goodman C. S., Shatz C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell. 1993 Jan;72 (Suppl):77–98. doi: 10.1016/s0092-8674(05)80030-3. [DOI] [PubMed] [Google Scholar]
  21. Gottmann K., Dietzel I. D., Lux H. D., Huck S., Rohrer H. Development of inward currents in chick sensory and autonomic neuronal precursor cells in culture. J Neurosci. 1988 Oct;8(10):3722–3732. doi: 10.1523/JNEUROSCI.08-10-03722.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gu X., Olson E. C., Spitzer N. C. Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci. 1994 Nov;14(11 Pt 1):6325–6335. doi: 10.1523/JNEUROSCI.14-11-06325.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Harris D. R., Green W. L., Craelius W. Acute thyroid hormone promotes slow inactivation of sodium current in neonatal cardiac myocytes. Biochim Biophys Acta. 1991 Oct 26;1095(2):175–181. doi: 10.1016/0167-4889(91)90081-8. [DOI] [PubMed] [Google Scholar]
  24. Hashimoto Y., Furukawa S., Omae F., Miyama Y., Hayashi K. Correlative regulation of nerve growth factor level and choline acetyltransferase activity by thyroxine in particular regions of infant rat brain. J Neurochem. 1994 Jul;63(1):326–332. doi: 10.1046/j.1471-4159.1994.63010326.x. [DOI] [PubMed] [Google Scholar]
  25. Honegger P., Lenoir D. Triodothyronine enhancement of neuronal differentiation in aggregating fetal rat brain cells cultured in a chemically defined medium. Brain Res. 1980 Oct 20;199(2):425–434. doi: 10.1016/0006-8993(80)90699-x. [DOI] [PubMed] [Google Scholar]
  26. Huang T. S., Chang Y. C., Lee S. H., Chen F. W., Chopra I. J. Visual, brainstem auditory and somatosensory evoked potential abnormalities in thyroid disease. Thyroidology. 1989 Dec;1(3):137–142. [PubMed] [Google Scholar]
  27. Huguenard J. R., Hamill O. P., Prince D. A. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol. 1988 Mar;59(3):778–795. doi: 10.1152/jn.1988.59.3.778. [DOI] [PubMed] [Google Scholar]
  28. Kim D., Smith T. W., Marsh J. D. Effect of thyroid hormone on slow calcium channel function in cultured chick ventricular cells. J Clin Invest. 1987 Jul;80(1):88–94. doi: 10.1172/JCI113068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lesser S. S., Lo D. C. Regulation of voltage-gated ion channels by NGF and ciliary neurotrophic factor in SK-N-SH neuroblastoma cells. J Neurosci. 1995 Jan;15(1 Pt 1):253–261. doi: 10.1523/JNEUROSCI.15-01-00253.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lindholm D. B. Thyroxine regulates the activity and the concentration of synaptic plasma membrane Na,K-ATPase in the developing rat brain cortex. Brain Res. 1984 Jul;317(1):83–88. doi: 10.1016/0165-3806(84)90142-1. [DOI] [PubMed] [Google Scholar]
  31. Lindholm D., Castrén E., Tsoulfas P., Kolbeck R., Berzaghi M. da P., Leingärtner A., Heisenberg C. P., Tessarollo L., Parada L. F., Thoenen H. Neurotrophin-3 induced by tri-iodothyronine in cerebellar granule cells promotes Purkinje cell differentiation. J Cell Biol. 1993 Jul;122(2):443–450. doi: 10.1083/jcb.122.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mager S., Palti Y., Binah O. Mechanism of hyperthyroidism-induced modulation of the L-type Ca2+ current in guinea pig ventricular myocytes. Pflugers Arch. 1992 Aug;421(5):425–430. doi: 10.1007/BF00370252. [DOI] [PubMed] [Google Scholar]
  33. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  34. McCormick D. A., Prince D. A. Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J Physiol. 1987 Dec;393:743–762. doi: 10.1113/jphysiol.1987.sp016851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mori-Okamoto J., Ashida H., Maru E., Tatsuno J. The development of action potentials in cultures of explanted cortical neurons from chick embryos. Dev Biol. 1983 Jun;97(2):408–416. doi: 10.1016/0012-1606(83)90097-0. [DOI] [PubMed] [Google Scholar]
  36. Norcross-Nechay K., Richards G. E., Cavallo A. Evoked potentials show early and delayed abnormalities in children with congenital hypothyroidism. Neuropediatrics. 1989 Aug;20(3):158–163. doi: 10.1055/s-2008-1071283. [DOI] [PubMed] [Google Scholar]
  37. O'Dowd D. K., Ribera A. B., Spitzer N. C. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. J Neurosci. 1988 Mar;8(3):792–805. doi: 10.1523/JNEUROSCI.08-03-00792.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Oppenheimer J. H., Schwartz H. L., Strait K. A. Thyroid hormone action 1994: the plot thickens. Eur J Endocrinol. 1994 Jan;130(1):15–24. doi: 10.1530/eje.0.1300015. [DOI] [PubMed] [Google Scholar]
  39. Patel A. J., Smith R. M., Kingsbury A. E., Hunt A., Balázs R. Effects of thyroid state on brain development: muscarinic acetylcholine and GABA receptors. Brain Res. 1980 Oct 6;198(2):389–402. doi: 10.1016/0006-8993(80)90752-0. [DOI] [PubMed] [Google Scholar]
  40. Pohunková D., Sulc J., Vána S. Influence of thyroid hormone supply on EEG frequency spectrum. Endocrinol Exp. 1989 Dec;23(4):251–258. [PubMed] [Google Scholar]
  41. Quattrini A., Nemni R., Marchettini P., Fazio R., Iannaccone S., Corbo M., Canal N. Effect of hypothyroidism on rat peripheral nervous system. Neuroreport. 1993 May;4(5):499–502. doi: 10.1097/00001756-199305000-00009. [DOI] [PubMed] [Google Scholar]
  42. Rami A., Patel A. J., Rabié A. Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells. Neuroscience. 1986 Dec;19(4):1217–1226. doi: 10.1016/0306-4522(86)90135-1. [DOI] [PubMed] [Google Scholar]
  43. Rubinstein I., Binah O. Thyroid hormone modulates membrane currents in guinea-pig ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1989 Dec;340(6):705–711. doi: 10.1007/BF00717748. [DOI] [PubMed] [Google Scholar]
  44. Scarpalezos S., Lygidakis C., Papageorgiou C., Maliara S., Koukoulommati A. S., Koutras D. A. Neural and muscular manifestations of hypothyroidism. Arch Neurol. 1973 Sep;29(3):140–144. doi: 10.1001/archneur.1973.00490270022002. [DOI] [PubMed] [Google Scholar]
  45. Shimoni Y., Severson D. L. Thyroid status and potassium currents in rat ventricular myocytes. Am J Physiol. 1995 Feb;268(2 Pt 2):H576–H583. doi: 10.1152/ajpheart.1995.268.2.H576. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES