Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Apr 22;264(1381):467–474. doi: 10.1098/rspb.1997.0067

Problems of reproducibility--does geologically ancient DNA survive in amber-preserved insects?

J J Austin 1, A J Ross 1, A B Smith 1, R A Fortey 1, R H Thomas 1
PMCID: PMC1688388  PMID: 9149422

Abstract

Apparently ancient DNA has been reported from amber-preserved insects many millions of years old. Rigorous attempts to reproduce these DNA sequences from amber- and copal-preserved bees and flies have failed to detect any authentic ancient insect DNA. Lack of reproducibility suggests that DNA does not survive over millions of years even in amber, the most promising of fossil environments.

Full Text

The Full Text of this article is available as a PDF (429.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck C. W. In reply: is the air in amber ancient? Science. 1988 Aug 5;241(4866):718–719. doi: 10.1126/science.241.4866.718. [DOI] [PubMed] [Google Scholar]
  2. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990 Mar;28(3):495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cano R. J., Poinar H. N., Pieniazek N. J., Acra A., Poinar G. O., Jr Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature. 1993 Jun 10;363(6429):536–538. doi: 10.1038/363536a0. [DOI] [PubMed] [Google Scholar]
  4. Cano R. J., Poinar H. N. Rapid isolation of DNA from fossil and museum specimens suitable for PCR. Biotechniques. 1993 Sep;15(3):432-4, 436. [PubMed] [Google Scholar]
  5. DeSalle R., Barcia M., Wray C. PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia. 1993 Oct 15;49(10):906–909. doi: 10.1007/BF01952607. [DOI] [PubMed] [Google Scholar]
  6. DeSalle R., Gatesy J., Wheeler W., Grimaldi D. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science. 1992 Sep 25;257(5078):1933–1936. doi: 10.1126/science.1411508. [DOI] [PubMed] [Google Scholar]
  7. DeSalle R. Implications of ancient DNA for phylogenetic studies. Experientia. 1994 Jun 15;50(6):543–550. doi: 10.1007/BF01921723. [DOI] [PubMed] [Google Scholar]
  8. Embley T. M. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol. 1991 Sep;13(3):171–174. doi: 10.1111/j.1472-765x.1991.tb00600.x. [DOI] [PubMed] [Google Scholar]
  9. Golenberg E. M., Giannasi D. E., Clegg M. T., Smiley C. J., Durbin M., Henderson D., Zurawski G. Chloroplast DNA sequence from a miocene Magnolia species. Nature. 1990 Apr 12;344(6267):656–658. doi: 10.1038/344656a0. [DOI] [PubMed] [Google Scholar]
  10. Hagelberg E., Thomas M. G., Cook C. E., Jr, Sher A. V., Baryshnikov G. F., Lister A. M. DNA from ancient mammoth bones. Nature. 1994 Aug 4;370(6488):333–334. doi: 10.1038/370333b0. [DOI] [PubMed] [Google Scholar]
  11. Handt O., Höss M., Krings M., Päbo S. Ancient DNA: methodological challenges. Experientia. 1994 Jun 15;50(6):524–529. doi: 10.1007/BF01921720. [DOI] [PubMed] [Google Scholar]
  12. Hedges S. B., Schweitzer M. H. Detecting dinosaur DNA. Science. 1995 May 26;268(5214):1191–1194. doi: 10.1126/science.7761839. [DOI] [PubMed] [Google Scholar]
  13. Hopfenberg H. B., Witchey L. C., Poinar G. O., Jr Is the air in amber ancient? Science. 1988 Aug 5;241(4866):717–718. doi: 10.1126/science.241.4866.717. [DOI] [PubMed] [Google Scholar]
  14. Höss M., Dilling A., Currant A., Päbo S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):181–185. doi: 10.1073/pnas.93.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Höss M., Päbo S., Vereshchagin N. K. Mammoth DNA sequences. Nature. 1994 Aug 4;370(6488):333–333. doi: 10.1038/370333a0. [DOI] [PubMed] [Google Scholar]
  16. Lindahl T. Recovery of antediluvian DNA. Nature. 1993 Oct 21;365(6448):700–700. doi: 10.1038/365700a0. [DOI] [PubMed] [Google Scholar]
  17. Lindahl T. The Croonian Lecture, 1996: endogenous damage to DNA. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1529–1538. doi: 10.1098/rstb.1996.0139. [DOI] [PubMed] [Google Scholar]
  18. Ou C. Y., Moore J. L., Schochetman G. Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques. 1991 Apr;10(4):442–446. [PubMed] [Google Scholar]
  19. Poinar G. O., Jr The range of life in amber: significance and implications in DNA studies. Experientia. 1994 Jun 15;50(6):536–542. doi: 10.1007/BF01921722. [DOI] [PubMed] [Google Scholar]
  20. Poinar H. N., Höss M., Bada J. L., Päbo S. Amino acid racemization and the preservation of ancient DNA. Science. 1996 May 10;272(5263):864–866. doi: 10.1126/science.272.5263.864. [DOI] [PubMed] [Google Scholar]
  21. Prince A. M., Andrus L. PCR: how to kill unwanted DNA. Biotechniques. 1992 Mar;12(3):358–360. [PubMed] [Google Scholar]
  22. Päbo S., Higuchi R. G., Wilson A. C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J Biol Chem. 1989 Jun 15;264(17):9709–9712. [PubMed] [Google Scholar]
  23. Päbo S., Wilson A. C. Miocene DNA sequences - a dream come true? Curr Biol. 1991 Feb;1(1):45–46. doi: 10.1016/0960-9822(91)90125-g. [DOI] [PubMed] [Google Scholar]
  24. Sidow A., Wilson A. C., Päbo S. Bacterial DNA in Clarkia fossils. Philos Trans R Soc Lond B Biol Sci. 1991 Sep 30;333(1268):429–433. doi: 10.1098/rstb.1991.0093. [DOI] [PubMed] [Google Scholar]
  25. Soltis P. S., Soltis D. E., Smiley C. J. An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):449–451. doi: 10.1073/pnas.89.1.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Taylor P. G. Reproducibility of ancient DNA sequences from extinct Pleistocene fauna. Mol Biol Evol. 1996 Jan;13(1):283–285. doi: 10.1093/oxfordjournals.molbev.a025566. [DOI] [PubMed] [Google Scholar]
  27. Walsh P. S., Metzger D. A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991 Apr;10(4):506–513. [PubMed] [Google Scholar]
  28. Woodward S. R., Weyand N. J., Bunnell M. DNA sequence from Cretaceous period bone fragments. Science. 1994 Nov 18;266(5188):1229–1232. doi: 10.1126/science.7973705. [DOI] [PubMed] [Google Scholar]
  29. Zischler H., Höss M., Handt O., von Haeseler A., van der Kuyl A. C., Goudsmit J. Detecting dinosaur DNA. Science. 1995 May 26;268(5214):1192–1194. doi: 10.1126/science.7605504. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES