Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Apr 22;264(1381):597–604. doi: 10.1098/rspb.1997.0085

An evolutionary correlate of genome size change in plethodontid salamanders

E L Jockusch
PMCID: PMC1688400

Abstract

Variation in the amount of nuclear DNA, the C-value, does not correlate with differences in morphological complexity. There are two classes of explanations for this observation, which is known as the 'C-value paradox'. The quantity of DNA may serve a 'nucleotypic' function that is positively selected. Alternatively, large genomes may consist of junk DNA, which increases until it negatively affects fitness. Attempts to resolve the C-value paradox focus on the link between genome size and fitness. This link is usually sought in life history traits, particularly developmental rates. I examined the relationship among two life history traits, egg size and embryonic developmental time and genome size, in 15 species of plethodontid salamanders. Surprisingly, there is no correlation between egg size and developmental time, a relationship included in models of life history evolution. However, genome size is positively correlated with embryonic developmental time, a result that is robust with respect to many sources of variation in the data. Without information on the targets of natural selection it is not possible with these data to distinguish between nucleotypic and junk DNA explanations for the C-value paradox.

Keywords: Genome Size C-Value Developmental Time Egg Size Plethodontidae Independent Contrasts

Full Text

The Full Text of this article is available as a PDF (235.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavalier-Smith T. Skeletal DNA and the evolution of genome size. Annu Rev Biophys Bioeng. 1982;11:273–302. doi: 10.1146/annurev.bb.11.060182.001421. [DOI] [PubMed] [Google Scholar]
  2. Doolittle W. F., Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. doi: 10.1038/284601a0. [DOI] [PubMed] [Google Scholar]
  3. Hally M. K., Rasch E. M., Mainwaring H. R., Bruce R. C. Cytophotometric evidence of variation in genome size of desmognathine salamanders. Histochemistry. 1986;85(3):185–192. doi: 10.1007/BF00494802. [DOI] [PubMed] [Google Scholar]
  4. Horner H. A., Macgregor H. C. C value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci. 1983 Sep;63:135–146. doi: 10.1242/jcs.63.1.135. [DOI] [PubMed] [Google Scholar]
  5. Jockusch E. L. Techniques for obtaining and raising plethodontid salamander eggs. Int J Dev Biol. 1996 Aug;40(4):911–912. [PubMed] [Google Scholar]
  6. Larson A., Wilson A. C. Patterns of ribosomal RNA evolution in salamanders. Mol Biol Evol. 1989 Mar;6(2):131–154. doi: 10.1093/oxfordjournals.molbev.a040539. [DOI] [PubMed] [Google Scholar]
  7. Mizuno S., Macgregor H. C. Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosoma. 1974;48(3):239–296. doi: 10.1007/BF00326507. [DOI] [PubMed] [Google Scholar]
  8. Olmo E., Morescalchi A. Evolution of the genome and cell sizes in salamanders. Experientia. 1975 Jul 15;31(7):804–806. doi: 10.1007/BF01938475. [DOI] [PubMed] [Google Scholar]
  9. Olmo E. Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem. 1983;27(4):227–256. [PubMed] [Google Scholar]
  10. Orgel L. E., Crick F. H. Selfish DNA: the ultimate parasite. Nature. 1980 Apr 17;284(5757):604–607. doi: 10.1038/284604a0. [DOI] [PubMed] [Google Scholar]
  11. Pagel M., Johnstone R. A. Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc Biol Sci. 1992 Aug 22;249(1325):119–124. doi: 10.1098/rspb.1992.0093. [DOI] [PubMed] [Google Scholar]
  12. Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
  13. Raff R. A. Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev Biol. 1987 Jan;119(1):6–19. doi: 10.1016/0012-1606(87)90201-6. [DOI] [PubMed] [Google Scholar]
  14. Roth G., Blanke J., Wake D. B. Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4796–4800. doi: 10.1073/pnas.91.11.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shine R. Propagule size and parental care: the "safe harbor" hypothesis. J Theor Biol. 1978 Dec 21;75(4):417–424. doi: 10.1016/0022-5193(78)90353-3. [DOI] [PubMed] [Google Scholar]
  16. Wake D. B., Larson A. Multidimensional analysis of an evolving lineage. Science. 1987 Oct 2;238(4823):42–48. doi: 10.1126/science.238.4823.42. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES