Abstract
The recent finding that dendritic spines (on which 90% of all excitatory synapses on pyramidal cells are formed) are not permanent structures but are continually being formed and adsorbed has implications for the present theoretical basis of neurocomputation, which is largely based on the concept of fixed nerve nets. This evidence would tend to support the recent theories of Edelman, Freeman, Globus, Pribram and others that neuronal networks in the brain operate mainly as nonlinear dynamic, chaotic systems. This paper presents a hypothesis of a possible neurochemical mechanism underlying this synaptic plasticity based on reactive oxygen species and toxic 0-semiquinones derived from catecholamines (i) by the enzyme prostaglandin H synthetase induced by glutamatergic NMDA receptor activation and (ii) by reactive nitrogen species derived from nitric oxide in a low ascorbate environment. A key factor in this neuromodulation may be the fact that catecholamines are potent antioxidants and free radical scavengers and are thus able to affect the redox mediated balance at the glutamate receptors between synapse formation and synapse removal that may be a key factor in neurocomputational plasticity. But catecholamines are also easily oxidized to neurotoxic 0-semiquinones and this may be relevant to the pathology of several diseases including schizophrenia. The relationship between dopamine release and positive reinforcement is relevant to this hypothesis.
Full Text
The Full Text of this article is available as a PDF (194.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J., Collaço-Moraes Y., de Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem. 1996 Jan;66(1):6–13. doi: 10.1046/j.1471-4159.1996.66010006.x. [DOI] [PubMed] [Google Scholar]
- Aizenman E., Lipton S. A., Loring R. H. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 1989 Mar;2(3):1257–1263. doi: 10.1016/0896-6273(89)90310-3. [DOI] [PubMed] [Google Scholar]
- Amano T., Ujihara H., Matsubayashi H., Sasa M., Yokota T., Tamura Y., Akaike A. Dopamine-induced protection of striatal neurons against kainate receptor-mediated glutamate cytotoxicity in vitro. Brain Res. 1994 Aug 29;655(1-2):61–69. doi: 10.1016/0006-8993(94)91597-0. [DOI] [PubMed] [Google Scholar]
- Baez S., Linderson Y., Segura-Aguilar J. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem Mol Med. 1995 Feb;54(1):12–18. doi: 10.1006/bmme.1995.1002. [DOI] [PubMed] [Google Scholar]
- Ben-Shachar D., Zuk R., Glinka Y. Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem. 1995 Feb;64(2):718–723. doi: 10.1046/j.1471-4159.1995.64020718.x. [DOI] [PubMed] [Google Scholar]
- Beyer R. E., Segura-Aguilar J., Di Bernardo S., Cavazzoni M., Fato R., Fiorentini D., Galli M. C., Setti M., Landi L., Lenaz G. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2528–2532. doi: 10.1073/pnas.93.6.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blennow K., Davidsson P., Gottfries C. G., Ekman R., Heilig M. Synaptic degeneration in thalamus in schizophrenia. Lancet. 1996 Sep 7;348(9028):692–693. doi: 10.1016/S0140-6736(05)65124-0. [DOI] [PubMed] [Google Scholar]
- Breder C. D., Smith W. L., Raz A., Masferrer J., Seibert K., Needleman P., Saper C. B. Distribution and characterization of cyclooxygenase immunoreactivity in the ovine brain. J Comp Neurol. 1992 Aug 15;322(3):409–438. doi: 10.1002/cne.903220309. [DOI] [PubMed] [Google Scholar]
- Cadet J. L., Kahler L. A. Free radical mechanisms in schizophrenia and tardive dyskinesia. Neurosci Biobehav Rev. 1994 Winter;18(4):457–467. doi: 10.1016/0149-7634(94)90001-9. [DOI] [PubMed] [Google Scholar]
- Ciani E., Grøneng L., Voltattorni M., Rolseth V., Contestabile A., Paulsen R. E. Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res. 1996 Jul 22;728(1):1–6. [PubMed] [Google Scholar]
- Cook J. A., Wink D. A., Blount V., Krishna M. C., Hanbauer I. Role of antioxidants in the nitric oxide-elicited inhibition of dopamine uptake in cultured mesencephalic neurons. Insights into potential mechanisms of nitric oxide-mediated neurotoxicity. Neurochem Int. 1996 May-Jun;28(5-6):609–617. doi: 10.1016/0197-0186(95)00125-5. [DOI] [PubMed] [Google Scholar]
- Coyle J. T., Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993 Oct 29;262(5134):689–695. doi: 10.1126/science.7901908. [DOI] [PubMed] [Google Scholar]
- Cramer K. S., Sur M. Activity-dependent remodeling of connections in the mammalian visual system. Curr Opin Neurobiol. 1995 Feb;5(1):106–111. doi: 10.1016/0959-4388(95)80094-8. [DOI] [PubMed] [Google Scholar]
- Dawson V. L., Dawson T. M., London E. D., Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson V. L., Dawson T. M. Nitric oxide actions in neurochemistry. Neurochem Int. 1996 Aug;29(2):97–110. doi: 10.1016/0197-0186(95)00149-2. [DOI] [PubMed] [Google Scholar]
- Dubinsky J. M., Kristal B. S., Elizondo-Fournier M. An obligate role for oxygen in the early stages of glutamate-induced, delayed neuronal death. J Neurosci. 1995 Nov;15(11):7071–7078. doi: 10.1523/JNEUROSCI.15-11-07071.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dykens J. A., Stern A., Trenkner E. Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem. 1987 Oct;49(4):1222–1228. doi: 10.1111/j.1471-4159.1987.tb10014.x. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Gally J. A. Nitric oxide: linking space and time in the brain. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11651–11652. doi: 10.1073/pnas.89.24.11651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Favit A., Sortino M. A., Aleppo G., Scapagnini U., Canonico P. L. Protection by dihydroergocryptine of glutamate-induced neurotoxicity. Pharmacol Toxicol. 1993 Oct;73(4):224–228. doi: 10.1111/j.1600-0773.1993.tb01568.x. [DOI] [PubMed] [Google Scholar]
- Freeman W. J. Neural networks and chaos. J Theor Biol. 1994 Nov 7;171(1):13–18. doi: 10.1006/jtbi.1994.1207. [DOI] [PubMed] [Google Scholar]
- Harris K. M., Kater S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci. 1994;17:341–371. doi: 10.1146/annurev.ne.17.030194.002013. [DOI] [PubMed] [Google Scholar]
- Hastings T. G. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem. 1995 Feb;64(2):919–924. doi: 10.1046/j.1471-4159.1995.64020919.x. [DOI] [PubMed] [Google Scholar]
- Kato S., Negishi K., Mawatari K., Kuo C. H. A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion. Neuroscience. 1992 Jun;48(4):903–914. doi: 10.1016/0306-4522(92)90278-a. [DOI] [PubMed] [Google Scholar]
- Kaufmann W. E., Worley P. F., Pegg J., Bremer M., Isakson P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2317–2321. doi: 10.1073/pnas.93.6.2317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kullmann D. M., Erdemli G., Asztély F. LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 1996 Sep;17(3):461–474. doi: 10.1016/s0896-6273(00)80178-6. [DOI] [PubMed] [Google Scholar]
- Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993 Aug 5;364(6437):535–537. doi: 10.1038/364535a0. [DOI] [PubMed] [Google Scholar]
- Lancelot E., Callebert J., Lerouet D., Revaud M. L., Boulu R. G., Plotkine M. Role of the L-arginine-nitric oxide pathway in the basal hydroxyl radical production in the striatum of awake rats as measured by brain microdialysis. Neurosci Lett. 1995 Dec 29;202(1-2):21–24. doi: 10.1016/0304-3940(95)12211-7. [DOI] [PubMed] [Google Scholar]
- Lieb K., Andrae J., Reisert I., Pilgrim C. Neurotoxicity of dopamine and protective effects of the NMDA receptor antagonist AP-5 differ between male and female dopaminergic neurons. Exp Neurol. 1995 Aug;134(2):222–229. doi: 10.1006/exnr.1995.1052. [DOI] [PubMed] [Google Scholar]
- Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
- Liu J., Mori A. Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage. Arch Biochem Biophys. 1993 Apr;302(1):118–127. doi: 10.1006/abbi.1993.1189. [DOI] [PubMed] [Google Scholar]
- Louis J. C., Magal E., Varon S. Receptor-mediated toxicity of norepinephrine on cultured catecholaminergic neurons of the rat brain stem. J Pharmacol Exp Ther. 1992 Sep;262(3):1274–1283. [PubMed] [Google Scholar]
- MacGregor D. G., Higgins M. J., Jones P. A., Maxwell W. L., Watson M. W., Graham D. I., Stone T. W. Ascorbate attenuates the systemic kainate-induced neurotoxicity in the rat hippocampus. Brain Res. 1996 Jul 15;727(1-2):133–144. doi: 10.1016/0006-8993(96)00362-9. [DOI] [PubMed] [Google Scholar]
- Mattammal M. B., Strong R., Lakshmi V. M., Chung H. D., Stephenson A. H. Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson's disease. J Neurochem. 1995 Apr;64(4):1645–1654. doi: 10.1046/j.1471-4159.1995.64041645.x. [DOI] [PubMed] [Google Scholar]
- Michel P. P., Hefti F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res. 1990 Aug;26(4):428–435. doi: 10.1002/jnr.490260405. [DOI] [PubMed] [Google Scholar]
- Mirmiran M., van Someren E. J., Swaab D. F. Is brain plasticity preserved during aging and in Alzheimer's disease? Behav Brain Res. 1996 Jun;78(1):43–48. doi: 10.1016/0166-4328(95)00217-0. [DOI] [PubMed] [Google Scholar]
- Offen D., Ziv I., Sternin H., Melamed E., Hochman A. Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson's disease. Exp Neurol. 1996 Sep;141(1):32–39. doi: 10.1006/exnr.1996.0136. [DOI] [PubMed] [Google Scholar]
- Ohmori T., Abekawa T., Koyama T. The role of glutamate in behavioral and neurotoxic effects of methamphetamine. Neurochem Int. 1996 Sep;29(3):301–307. doi: 10.1016/0197-0186(95)00152-2. [DOI] [PubMed] [Google Scholar]
- Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., Floyd R. A. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5144–5147. doi: 10.1073/pnas.87.13.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olney J. W., Farber N. B. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995 Dec;52(12):998–1007. doi: 10.1001/archpsyc.1995.03950240016004. [DOI] [PubMed] [Google Scholar]
- Patel M., Day B. J., Crapo J. D., Fridovich I., McNamara J. O. Requirement for superoxide in excitotoxic cell death. Neuron. 1996 Feb;16(2):345–355. doi: 10.1016/s0896-6273(00)80052-5. [DOI] [PubMed] [Google Scholar]
- Pellegrini-Giampietro D. E., Cherici G., Alesiani M., Carlà V., Moroni F. Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation. J Neurochem. 1988 Dec;51(6):1960–1963. doi: 10.1111/j.1471-4159.1988.tb01187.x. [DOI] [PubMed] [Google Scholar]
- Peterson C. L., Thompson M. A., Martin D., Nadler J. V. Modulation of glutamate and aspartate release from slices of hippocampal area CA1 by inhibitors of arachidonic acid metabolism. J Neurochem. 1995 Mar;64(3):1152–1160. doi: 10.1046/j.1471-4159.1995.64031152.x. [DOI] [PubMed] [Google Scholar]
- Pritchard W. S., Duke D. W. Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci. 1992 Nov-Dec;67(1-4):31–80. doi: 10.3109/00207459208994774. [DOI] [PubMed] [Google Scholar]
- Rebec G. V., Pierce R. C. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol. 1994 Aug;43(6):537–565. doi: 10.1016/0301-0082(94)90052-3. [DOI] [PubMed] [Google Scholar]
- Rothman S. M., Olney J. W. Excitotoxicity and the NMDA receptor--still lethal after eight years. Trends Neurosci. 1995 Feb;18(2):57–58. doi: 10.1016/0166-2236(95)93869-y. [DOI] [PubMed] [Google Scholar]
- Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schauwecker P. E., McNeill T. H. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion. Exp Neurol. 1996 Sep;141(1):145–153. doi: 10.1006/exnr.1996.0148. [DOI] [PubMed] [Google Scholar]
- Schultzberg M., Segura-Aguilar J., Lind C. Distribution of DT diaphorase in the rat brain: biochemical and immunohistochemical studies. Neuroscience. 1988 Dec;27(3):763–776. doi: 10.1016/0306-4522(88)90181-9. [DOI] [PubMed] [Google Scholar]
- Segal M. Dendritic spines for neuroprotection: a hypothesis. Trends Neurosci. 1995 Nov;18(11):468–471. doi: 10.1016/0166-2236(95)92765-i. [DOI] [PubMed] [Google Scholar]
- Segura-Aguilar J., Lind C. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact. 1989;72(3):309–324. doi: 10.1016/0009-2797(89)90006-9. [DOI] [PubMed] [Google Scholar]
- Segura-Aguilar J. Peroxidase activity of liver microsomal vitamin D 25-hydroxylase and cytochrome P450 1A2 catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome. Biochem Mol Med. 1996 Jun;58(1):122–129. doi: 10.1006/bmme.1996.0039. [DOI] [PubMed] [Google Scholar]
- Sesack S. R., Pickel V. M. In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res. 1990 Sep 17;527(2):266–279. doi: 10.1016/0006-8993(90)91146-8. [DOI] [PubMed] [Google Scholar]
- Siman R., Noszek J. C. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron. 1988 Jun;1(4):279–287. doi: 10.1016/0896-6273(88)90076-1. [DOI] [PubMed] [Google Scholar]
- Smythies J. R., Gottfries C. G., Regland B. Disturbances of one-carbon metabolism in neuropsychiatric disorders: a review. Biol Psychiatry. 1997 Jan 15;41(2):230–233. doi: 10.1016/S0006-3223(96)00068-6. [DOI] [PubMed] [Google Scholar]
- Smythies J. Endogenous neurotoxins relevant to schizophrenia. J R Soc Med. 1996 Dec;89(12):679–680. doi: 10.1177/014107689608901206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smythies J. On the functional of neuromelanin. Proc Biol Sci. 1996 Apr 22;263(1369):487–489. doi: 10.1098/rspb.1996.0073. [DOI] [PubMed] [Google Scholar]
- Thompson S. M., Fortunato C., McKinney R. A., Müller M., Gähwiler B. H. Mechanisms underlying the neuropathological consequences of epileptic activity in the rat hippocampus in vitro. J Comp Neurol. 1996 Sep 2;372(4):515–528. doi: 10.1002/(SICI)1096-9861(19960902)372:4<515::AID-CNE2>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- Trotti D., Rossi D., Gjesdal O., Levy L. M., Racagni G., Danbolt N. C., Volterra A. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem. 1996 Mar 15;271(11):5976–5979. doi: 10.1074/jbc.271.11.5976. [DOI] [PubMed] [Google Scholar]
- White R. J., Reynolds I. J. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci. 1996 Sep 15;16(18):5688–5697. doi: 10.1523/JNEUROSCI.16-18-05688.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamagata K., Andreasson K. I., Kaufmann W. E., Barnes C. A., Worley P. F. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron. 1993 Aug;11(2):371–386. doi: 10.1016/0896-6273(93)90192-t. [DOI] [PubMed] [Google Scholar]