Abstract
Bacteriocins are proteinaceous anticompetitor molecules produced by bacteria against closely related species. A number of theoretical models have been used to explain experimental data that indicate high polymorphisms among bacteriocins and a frequency-dependent nature of selection for bacteriocin-producing strains. The majority of these experimental data were, however, obtained from investigations into the colicin group of bacteriocins produced by Gram-negative bacteria. The conclusions drawn from these models have been extrapolated to other bacteriocins and allelopathic compounds in general. Examination of more recent experimental investigations into the bacteriocins of Gram-positive bacteria indicate a lower degree of polymorphism and a less frequency dependent mode of selection among these strains them among the colicin-producing strains. Here we examine these contradictions in the light of the assumptions and conclusions of the theoretical models and reported data. We show that fitness costs as indicated by decreased relative maximum growth rate associated with bacteriocin production may be much lower in many cases than is assumed in the present models. A lower fitness cost associated with bacteriocin production adequately explains the newer data from Gram-positive bacteria cited here, and indicates that extrapolation of existing models to all bacteriocins and other allelopathic compounds is not appropriate.
Full Text
The Full Text of this article is available as a PDF (168.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abee T., Klaenhammer T. R., Letellier L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994 Mar;60(3):1006–1013. doi: 10.1128/aem.60.3.1006-1013.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams J., Kinney T., Thompson S., Rubin L., Helling R. B. Frequency-Dependent Selection for Plasmid-Containing Cells of ESCHERICHIA COLI. Genetics. 1979 Apr;91(4):627–637. doi: 10.1093/genetics/91.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouma J. E., Lenski R. E. Evolution of a bacteria/plasmid association. Nature. 1988 Sep 22;335(6188):351–352. doi: 10.1038/335351a0. [DOI] [PubMed] [Google Scholar]
- Chao L., Levin B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6324–6328. doi: 10.1073/pnas.78.10.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chhibber S., Goel A., Kapoor N., Saxena M., Vadehra D. V. Bacteriocin (klebocin) typing of clinical isolates of Klebsiella pneumoniae. Eur J Epidemiol. 1988 Mar;4(1):115–118. doi: 10.1007/BF00152702. [DOI] [PubMed] [Google Scholar]
- Felix J. V., Papathanasopoulos M. A., Smith A. A., von Holy A., Hastings J. W. Characterization of leucocin B-Ta11a: a bacteriocin from Leuconostoc carnosum Ta11a isolated from meat. Curr Microbiol. 1994 Oct;29(4):207–212. doi: 10.1007/BF01570155. [DOI] [PubMed] [Google Scholar]
- Fleury Y., Dayem M. A., Montagne J. J., Chaboisseau E., Le Caer J. P., Nicolas P., Delfour A. Covalent structure, synthesis, and structure-function studies of mesentericin Y 105(37), a defensive peptide from gram-positive bacteria Leuconostoc mesenteroides. J Biol Chem. 1996 Jun 14;271(24):14421–14429. doi: 10.1074/jbc.271.24.14421. [DOI] [PubMed] [Google Scholar]
- Gilmore M. S., Segarra R. A., Booth M. C., Bogie C. P., Hall L. R., Clewell D. B. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol. 1994 Dec;176(23):7335–7344. doi: 10.1128/jb.176.23.7335-7344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartl D. L., Dykhuizen D. E., Miller R. D., Green L., de Framond J. Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell. 1983 Dec;35(2 Pt 1):503–510. doi: 10.1016/0092-8674(83)90184-8. [DOI] [PubMed] [Google Scholar]
- Hastings J. W., Sailer M., Johnson K., Roy K. L., Vederas J. C., Stiles M. E. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol. 1991 Dec;173(23):7491–7500. doi: 10.1128/jb.173.23.7491-7500.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hastings J. W., Stiles M. E., von Holy A. Bacteriocins of leuconostocs isolated from meat. Int J Food Microbiol. 1994 Dec;24(1-2):75–81. doi: 10.1016/0168-1605(94)90107-4. [DOI] [PubMed] [Google Scholar]
- Horn N., Swindell S., Dodd H., Gasson M. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 1991 Aug;228(1-2):129–135. doi: 10.1007/BF00282457. [DOI] [PubMed] [Google Scholar]
- Hühne K., Axelsson L., Holck A., Kröckel L. Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology. 1996 Jun;142(Pt 6):1437–1448. doi: 10.1099/13500872-142-6-1437. [DOI] [PubMed] [Google Scholar]
- Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James R., Kleanthous C., Moore G. R. The biology of E colicins: paradigms and paradoxes. Microbiology. 1996 Jul;142(Pt 7):1569–1580. doi: 10.1099/13500872-142-7-1569. [DOI] [PubMed] [Google Scholar]
- Keis S., Bennett C. F., Ward V. K., Jones D. T. Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol. 1995 Oct;45(4):693–705. doi: 10.1099/00207713-45-4-693. [DOI] [PubMed] [Google Scholar]
- Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
- Lenski R. E., Simpson S. C., Nguyen T. T. Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol. 1994 Jun;176(11):3140–3147. doi: 10.1128/jb.176.11.3140-3147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levin B. R. Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1196):459–472. doi: 10.1098/rstb.1988.0059. [DOI] [PubMed] [Google Scholar]
- Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):113–128. doi: 10.1007/BF00395929. [DOI] [PubMed] [Google Scholar]
- Nguyen T. N., Phan Q. G., Duong L. P., Bertrand K. P., Lenski R. E. Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of Escherichia coli K12. Mol Biol Evol. 1989 May;6(3):213–225. doi: 10.1093/oxfordjournals.molbev.a040545. [DOI] [PubMed] [Google Scholar]
- Noack D., Roth M., Geuther R., Müller G., Undisz K., Hoffmeier C., Gáspár S. Maintenance and genetic stability of vector plasmids pBR322 and pBR325 in Escherichia coli K12 strains grown in a chemostat. Mol Gen Genet. 1981;184(1):121–124. doi: 10.1007/BF00271207. [DOI] [PubMed] [Google Scholar]
- Quadri L. E., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem. 1994 Apr 22;269(16):12204–12211. [PubMed] [Google Scholar]
- Riley M. A., Gordon D. M. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol. 1992 Jul;138(7):1345–1352. doi: 10.1099/00221287-138-7-1345. [DOI] [PubMed] [Google Scholar]
- Ruiz-Barba J. L., Cathcart D. P., Warner P. J., Jiménez-Díaz R. Use of Lactobacillus plantarum LPCO10, a Bacteriocin Producer, as a Starter Culture in Spanish-Style Green Olive Fermentations. Appl Environ Microbiol. 1994 Jun;60(6):2059–2064. doi: 10.1128/aem.60.6.2059-2064.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schripsema J., de Rudder K. E., van Vliet T. B., Lankhorst P. P., de Vroom E., Kijne J. W., van Brussel A. A. Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol. 1996 Jan;178(2):366–371. doi: 10.1128/jb.178.2.366-371.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub W. H. Bacteriocin typing and biotyping of clinical isolates of Serratia marcescens. Zentralbl Bakteriol. 1991 Oct;275(4):474–486. doi: 10.1016/s0934-8840(11)80168-4. [DOI] [PubMed] [Google Scholar]