Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 May 22;264(1382):731–737. doi: 10.1098/rspb.1997.0104

CSlo encodes calcium-activated potassium channels in the chick's cochlea.

G J Jiang 1, M Zidanic 1, R L Michaels 1, T H Michael 1, C Griguer 1, P A Fuchs 1
PMCID: PMC1688420  PMID: 9178544

Abstract

Large conductance, calcium-activated (BK) potassium channels play a central role in the excitability of cochlear hair cells. In mammalian brains, one class of these channels, termed Slo, is encoded by homologues of the Drosophila 'slowpoke' gene. By homology screening with mouse Sla cDNA, we have isolated a full-length clone (cSlo1) from a chick's cochlear cDNA library, rSlol had greater than 90% identity with mouse Slo at the amino acid level, and was even better matched to a human brain Slo at the amino and carboxy termini. cSlol had none of the additional exons found in splice variants from mammalian brain. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to show expression of cSlal in the microdissected hair cell epithelium basilar papilla. Transient transfection of HIEK 293 cells demonstrated that cSlol encoded a potassium channel whose conductance averaged 224 pS at +60 mV in symmetrical 140 mM K. Macroscopic currents through cSlol channels were blocked by scorpion toxin or tetraethyl ammonium, and were voltage and calcium dependent. cSlol is likely to encode BK-type calcium-activated potassium channels in cochlear hair cells.

Full Text

The Full Text of this article is available as a PDF (417.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman J. P., Shen K. Z., Kavanaugh M. P., Warren R. A., Wu Y. N., Lagrutta A., Bond C. T., North R. A. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron. 1992 Aug;9(2):209–216. doi: 10.1016/0896-6273(92)90160-f. [DOI] [PubMed] [Google Scholar]
  2. Art J. J., Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol. 1987 Apr;385:207–242. doi: 10.1113/jphysiol.1987.sp016492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Art J. J., Wu Y. C., Fettiplace R. The calcium-activated potassium channels of turtle hair cells. J Gen Physiol. 1995 Jan;105(1):49–72. doi: 10.1085/jgp.105.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashmore J. F., Meech R. W. Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature. 1986 Jul 24;322(6077):368–371. doi: 10.1038/322368a0. [DOI] [PubMed] [Google Scholar]
  5. Atkinson N. S., Robertson G. A., Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991 Aug 2;253(5019):551–555. doi: 10.1126/science.1857984. [DOI] [PubMed] [Google Scholar]
  6. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  7. Butler A., Tsunoda S., McCobb D. P., Wei A., Salkoff L. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science. 1993 Jul 9;261(5118):221–224. doi: 10.1126/science.7687074. [DOI] [PubMed] [Google Scholar]
  8. Cotanche D. A., Sulik K. K. Scanning electron microscopy of the developing chick tegmentum vasculosum. Scan Electron Microsc. 1982;(Pt 3):1283–1294. [PubMed] [Google Scholar]
  9. DiChiara T. J., Reinhart P. H. Distinct effects of Ca2+ and voltage on the activation and deactivation of cloned Ca(2+)-activated K+ channels. J Physiol. 1995 Dec 1;489(Pt 2):403–418. doi: 10.1113/jphysiol.1995.sp021061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dworetzky S. I., Boissard C. G., Lum-Ragan J. T., McKay M. C., Post-Munson D. J., Trojnacki J. T., Chang C. P., Gribkoff V. K. Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J Neurosci. 1996 Aug 1;16(15):4543–4550. doi: 10.1523/JNEUROSCI.16-15-04543.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuchs P. A., Evans M. G. Potassium currents in hair cells isolated from the cochlea of the chick. J Physiol. 1990 Oct;429:529–551. doi: 10.1113/jphysiol.1990.sp018271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuchs P. A., Evans M. G. Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea. J Comp Physiol A. 1988 Dec;164(2):151–163. doi: 10.1007/BF00603947. [DOI] [PubMed] [Google Scholar]
  13. Fuchs P. A., Nagai T., Evans M. G. Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci. 1988 Jul;8(7):2460–2467. doi: 10.1523/JNEUROSCI.08-07-02460.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuchs P. A., Sokolowski B. H. The acquisition during development of Ca-activated potassium currents by cochlear hair cells of the chick. Proc Biol Sci. 1990 Aug 22;241(1301):122–126. doi: 10.1098/rspb.1990.0075. [DOI] [PubMed] [Google Scholar]
  15. Hudspeth A. J., Lewis R. S. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol. 1988 Jun;400:237–274. doi: 10.1113/jphysiol.1988.sp017119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knaus H. G., Folander K., Garcia-Calvo M., Garcia M. L., Kaczorowski G. J., Smith M., Swanson R. Primary sequence and immunological characterization of beta-subunit of high conductance Ca(2+)-activated K+ channel from smooth muscle. J Biol Chem. 1994 Jun 24;269(25):17274–17278. [PubMed] [Google Scholar]
  17. Lagrutta A., Shen K. Z., North R. A., Adelman J. P. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J Biol Chem. 1994 Aug 12;269(32):20347–20351. [PubMed] [Google Scholar]
  18. Lewis R. S., Hudspeth A. J. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature. 1983 Aug 11;304(5926):538–541. doi: 10.1038/304538a0. [DOI] [PubMed] [Google Scholar]
  19. McManus O. B., Helms L. M., Pallanck L., Ganetzky B., Swanson R., Leonard R. J. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron. 1995 Mar;14(3):645–650. doi: 10.1016/0896-6273(95)90321-6. [DOI] [PubMed] [Google Scholar]
  20. Navaratnam D. S., Escobar L., Covarrubias M., Oberholtzer J. C. Permeation properties and differential expression across the auditory receptor epithelium of an inward rectifier K+ channel cloned from the chick inner ear. J Biol Chem. 1995 Aug 18;270(33):19238–19245. doi: 10.1074/jbc.270.33.19238. [DOI] [PubMed] [Google Scholar]
  21. Oesterle E. C., Cunningham D. E., Rubel E. W. Ultrastructure of hyaline, border, and vacuole cells in chick inner ear. J Comp Neurol. 1992 Apr 1;318(1):64–82. doi: 10.1002/cne.903180105. [DOI] [PubMed] [Google Scholar]
  22. Sugihara I. Calcium-activated potassium channels in goldfish hair cells. J Physiol. 1994 May 1;476(3):373–390. doi: 10.1113/jphysiol.1994.sp020139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tseng-Crank J., Foster C. D., Krause J. D., Mertz R., Godinot N., DiChiara T. J., Reinhart P. H. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron. 1994 Dec;13(6):1315–1330. doi: 10.1016/0896-6273(94)90418-9. [DOI] [PubMed] [Google Scholar]
  24. Wei A., Solaro C., Lingle C., Salkoff L. Calcium sensitivity of BK-type KCa channels determined by a separable domain. Neuron. 1994 Sep;13(3):671–681. doi: 10.1016/0896-6273(94)90034-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES