Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 May 22;264(1382):649–655. doi: 10.1098/rspb.1997.0092

Influences on the global structure of cortical maps.

G J Goodhill 1, K R Bates 1, P R Montague 1
PMCID: PMC1688424  PMID: 9178536

Abstract

Cortical maps often contain global spatial structure: however, theoretical accounts for their development have generally concentrated on reproducing only local structure. We show that the elastic net model of cortical map formation can closely approximate the global structure of the ocular dominance column map observed in macaque primary visual cortex. A key component is the assumption of spatially non-uniform and anisotropic correlations in the retina. This work shows how genetic and epigenetic effects could combine to establish characteristic global structure in cortical maps.

Full Text

The Full Text of this article is available as a PDF (1,011.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer H. U. Development of oriented ocular dominance bands as a consequence of areal geometry. Neural Comput. 1995 Jan;7(1):36–50. doi: 10.1162/neco.1995.7.1.36. [DOI] [PubMed] [Google Scholar]
  2. Berns G. S., Dayan P., Sejnowski T. J. A correlational model for the development of disparity selectivity in visual cortex that depends on prenatal and postnatal phases. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8277–8281. doi: 10.1073/pnas.90.17.8277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Durbin R., Mitchison G. A dimension reduction framework for understanding cortical maps. Nature. 1990 Feb 15;343(6259):644–647. doi: 10.1038/343644a0. [DOI] [PubMed] [Google Scholar]
  4. Durbin R., Willshaw D. An analogue approach to the travelling salesman problem using an elastic net method. Nature. 1987 Apr 16;326(6114):689–691. doi: 10.1038/326689a0. [DOI] [PubMed] [Google Scholar]
  5. Erwin E., Obermayer K., Schulten K. Models of orientation and ocular dominance columns in the visual cortex: a critical comparison. Neural Comput. 1995 May;7(3):425–468. doi: 10.1162/neco.1995.7.3.425. [DOI] [PubMed] [Google Scholar]
  6. Galli L., Maffei L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science. 1988 Oct 7;242(4875):90–91. doi: 10.1126/science.3175637. [DOI] [PubMed] [Google Scholar]
  7. Goodhill G. J., Löwel S. Theory meets experiment: correlated neural activity helps determine ocular dominance column periodicity. Trends Neurosci. 1995 Oct;18(10):437–439. doi: 10.1016/0166-2236(95)94490-v. [DOI] [PubMed] [Google Scholar]
  8. Horton J. C., Hocking D. R. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci. 1996 Mar 1;16(5):1791–1807. doi: 10.1523/JNEUROSCI.16-05-01791.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hubel D. H., Wiesel T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):1–59. doi: 10.1098/rspb.1977.0085. [DOI] [PubMed] [Google Scholar]
  10. Jones D. G., Van Sluyters R. C., Murphy K. M. A computational model for the overall pattern of ocular dominance. J Neurosci. 1991 Dec;11(12):3794–3808. doi: 10.1523/JNEUROSCI.11-12-03794.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. La Vail M. M., Rapaport D. H., Rakic P. Cytogenesis in the monkey retina. J Comp Neurol. 1991 Jul 1;309(1):86–114. doi: 10.1002/cne.903090107. [DOI] [PubMed] [Google Scholar]
  12. Lachica E. A., Casagrande V. A. Development of primate retinogeniculate axon arbors. Vis Neurosci. 1988;1(1):103–123. doi: 10.1017/s095252380000105x. [DOI] [PubMed] [Google Scholar]
  13. LeVay S., Connolly M., Houde J., Van Essen D. C. The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. J Neurosci. 1985 Feb;5(2):486–501. doi: 10.1523/JNEUROSCI.05-02-00486.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Löwel S. Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. J Neurosci. 1994 Dec;14(12):7451–7468. doi: 10.1523/JNEUROSCI.14-12-07451.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meister M., Wong R. O., Baylor D. A., Shatz C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 1991 May 17;252(5008):939–943. doi: 10.1126/science.2035024. [DOI] [PubMed] [Google Scholar]
  16. Obermayer K., Ritter H., Schulten K. A principle for the formation of the spatial structure of cortical feature maps. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8345–8349. doi: 10.1073/pnas.87.21.8345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Obermayer K, Blasdel GG, Schulten K. Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. Phys Rev A. 1992 May 15;45(10):7568–7589. doi: 10.1103/physreva.45.7568. [DOI] [PubMed] [Google Scholar]
  18. Perry V. H., Cowey A. The ganglion cell and cone distributions in the monkey's retina: implications for central magnification factors. Vision Res. 1985;25(12):1795–1810. doi: 10.1016/0042-6989(85)90004-5. [DOI] [PubMed] [Google Scholar]
  19. Provis J. M., van Driel D., Billson F. A., Russell P. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J Comp Neurol. 1985 Mar 22;233(4):429–451. doi: 10.1002/cne.902330403. [DOI] [PubMed] [Google Scholar]
  20. Rapaport D. H., Stone J. The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience. 1984 Feb;11(2):289–301. doi: 10.1016/0306-4522(84)90024-1. [DOI] [PubMed] [Google Scholar]
  21. Swindale N. V. A model for the formation of ocular dominance stripes. Proc R Soc Lond B Biol Sci. 1980 Jun 24;208(1171):243–264. doi: 10.1098/rspb.1980.0051. [DOI] [PubMed] [Google Scholar]
  22. Swindale N. V. The development of topography in the visual cortex: a review of models. Network. 1996 May;7(2):161–247. doi: 10.1088/0954-898X/7/2/002. [DOI] [PubMed] [Google Scholar]
  23. Wolf F., Bauer H. U., Geisel T. Formation of field discontinuities and islands in visual cortical maps. Biol Cybern. 1994;70(6):525–531. doi: 10.1007/BF00198805. [DOI] [PubMed] [Google Scholar]
  24. Wolf F., Bauer H. U., Pawelzik K., Geisel T. Organization of the visual cortex. Nature. 1996 Jul 25;382(6589):306–307. doi: 10.1038/382306a0. [DOI] [PubMed] [Google Scholar]
  25. Wong R. O., Chernjavsky A., Smith S. J., Shatz C. J. Early functional neural networks in the developing retina. Nature. 1995 Apr 20;374(6524):716–718. doi: 10.1038/374716a0. [DOI] [PubMed] [Google Scholar]
  26. Wässle H., Grünert U., Röhrenbeck J., Boycott B. B. Retinal ganglion cell density and cortical magnification factor in the primate. Vision Res. 1990;30(11):1897–1911. doi: 10.1016/0042-6989(90)90166-i. [DOI] [PubMed] [Google Scholar]
  27. van Driel D., Provis J. M., Billson F. A. Early differentiation of ganglion, amacrine, bipolar, and Muller cells in the developing fovea of human retina. J Comp Neurol. 1990 Jan 8;291(2):203–219. doi: 10.1002/cne.902910205. [DOI] [PubMed] [Google Scholar]
  28. van der Schaaf A., van Hateren J. H. Modelling the power spectra of natural images: statistics and information. Vision Res. 1996 Sep;36(17):2759–2770. doi: 10.1016/0042-6989(96)00002-8. [DOI] [PubMed] [Google Scholar]
  29. von der Malsburg C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik. 1973 Dec 31;14(2):85–100. doi: 10.1007/BF00288907. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES