Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Jun 22;264(1383):877–884. doi: 10.1098/rspb.1997.0122

Contribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord.

M Beato 1, E Bracci 1, A Nistri 1
PMCID: PMC1688428  PMID: 9225479

Abstract

The motor programme executed by the spinal cord to generate locomotion involves glutamate-mediated excitatory synaptic transmission. Using the neonatal rat spinal cord as an in vitro model in which the locomotor pattern was evoked by 5-hydroxytryptamine (5-HT), we investigated the role of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in the generation of locomotor patterns recorded electrophysiologically from pairs of ventral roots. In a control solution, 5-HT (2.5-30 microM) elicited persistent alternating activity in left and right lumbar ventral roots. Increasing 5-HT concentration within this range resulted in increased cycle frequency (on average from 8 to 20 cycles min-1). In the presence of NMDA receptor antagonism, persistent alternating activity was still observed as long as 5-HT doses were increased (range 20-40 microM), even if locomotor pattern frequency was lower than in the control solution. In the presence of non-NMDA receptor antagonism, stable locomotor activity (with lower cycle frequency) was also elicited by 5-HT, albeit with doses larger than in the control solution (15-40 microM). When NMDA and non-NMDA receptors were simultaneously blocked, 5-HT (5-120 microM) always failed to elicit locomotor activity. These data show that the operation of one glutamate receptor class was sufficient to express locomotor activity. As locomotor activity developed at a lower frequency than in the control solution after pharmacological block of either NMDA or non-NMDA receptors, it is suggested that both receptor classes were involved in locomotor pattern generation.

Full Text

The Full Text of this article is available as a PDF (608.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bracci E., Ballerini L., Nistri A. Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. J Neurosci. 1996 Nov 1;16(21):7063–7076. doi: 10.1523/JNEUROSCI.16-21-07063.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bracci E., Ballerini L., Nistri A. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. J Neurophysiol. 1996 Feb;75(2):640–647. doi: 10.1152/jn.1996.75.2.640. [DOI] [PubMed] [Google Scholar]
  3. Cazalets J. R., Borde M., Clarac F. The synaptic drive from the spinal locomotor network to motoneurons in the newborn rat. J Neurosci. 1996 Jan;16(1):298–306. doi: 10.1523/JNEUROSCI.16-01-00298.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cazalets J. R., Sqalli-Houssaini Y., Clarac F. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol. 1992 Sep;455:187–204. doi: 10.1113/jphysiol.1992.sp019296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Corradetti R., King A. E., Nistri A., Rovira C., Sivilotti L. Pharmacological characterization of D-aminophosphonovaleric acid antagonism of amino acid and synaptically evoked excitations on frog motoneurones in vitro: an intracellular study. Br J Pharmacol. 1985 Sep;86(1):19–25. doi: 10.1111/j.1476-5381.1985.tb09430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowley K. C., Schmidt B. J. A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci Lett. 1994 Apr 25;171(1-2):147–150. doi: 10.1016/0304-3940(94)90626-2. [DOI] [PubMed] [Google Scholar]
  7. Cowley K. C., Schmidt B. J. Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol. 1995 Sep;74(3):1109–1117. doi: 10.1152/jn.1995.74.3.1109. [DOI] [PubMed] [Google Scholar]
  8. Douglas J. R., Noga B. R., Dai X., Jordan L. M. The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci. 1993 Mar;13(3):990–1000. doi: 10.1523/JNEUROSCI.13-03-00990.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grillner S., Wallén P., Brodin L., Lansner A. Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci. 1991;14:169–199. doi: 10.1146/annurev.ne.14.030191.001125. [DOI] [PubMed] [Google Scholar]
  10. Ho S., O'Donovan M. J. Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo. J Neurosci. 1993 Apr;13(4):1354–1371. doi: 10.1523/JNEUROSCI.13-04-01354.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hochman S., Jordan L. M., MacDonald J. F. N-methyl-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord. J Neurophysiol. 1994 Aug;72(2):565–577. doi: 10.1152/jn.1994.72.2.565. [DOI] [PubMed] [Google Scholar]
  12. Jiang Z. G., Shen E., Dun N. J. Excitatory and inhibitory transmission from dorsal root afferents to neonate rat motoneurons in vitro. Brain Res. 1990 Dec 3;535(1):110–118. doi: 10.1016/0006-8993(90)91829-6. [DOI] [PubMed] [Google Scholar]
  13. Jonas P., Spruston N. Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS. Curr Opin Neurobiol. 1994 Jun;4(3):366–372. doi: 10.1016/0959-4388(94)90098-1. [DOI] [PubMed] [Google Scholar]
  14. Katz P. S. Neurons, networks, and motor behavior. Neuron. 1996 Feb;16(2):245–253. doi: 10.1016/s0896-6273(00)80043-4. [DOI] [PubMed] [Google Scholar]
  15. Kiehn O., Kjaerulff O. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J Neurophysiol. 1996 Apr;75(4):1472–1482. doi: 10.1152/jn.1996.75.4.1472. [DOI] [PubMed] [Google Scholar]
  16. Kjaerulff O., Kiehn O. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci. 1996 Sep 15;16(18):5777–5794. doi: 10.1523/JNEUROSCI.16-18-05777.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kudo N., Yamada T. N-methyl-D,L-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro. Neurosci Lett. 1987 Mar 20;75(1):43–48. doi: 10.1016/0304-3940(87)90072-3. [DOI] [PubMed] [Google Scholar]
  18. Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
  19. Pinco M., Lev-Tov A. Synaptic excitation of alpha-motoneurons by dorsal root afferents in the neonatal rat spinal cord. J Neurophysiol. 1993 Jul;70(1):406–417. doi: 10.1152/jn.1993.70.1.406. [DOI] [PubMed] [Google Scholar]
  20. Rossignol S., Dubuc R. Spinal pattern generation. Curr Opin Neurobiol. 1994 Dec;4(6):894–902. doi: 10.1016/0959-4388(94)90139-2. [DOI] [PubMed] [Google Scholar]
  21. Smith J. C., Feldman J. L., Schmidt B. J. Neural mechanisms generating locomotion studied in mammalian brain stem-spinal cord in vitro. FASEB J. 1988 Apr;2(7):2283–2288. doi: 10.1096/fasebj.2.7.2450802. [DOI] [PubMed] [Google Scholar]
  22. Trueblood P. R., Levine M. S., Chandler S. H. Dual-component excitatory amino acid-mediated responses in trigeminal motoneurons and their modulation by serotonin in vitro. J Neurophysiol. 1996 Oct;76(4):2461–2473. doi: 10.1152/jn.1996.76.4.2461. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES