Abstract
We investigate host-pathogen dynamics and conditions for coexistence in two models incorporating frequency-dependent horizontal transmission in conjunction with vertical transmission. The first model combines frequency-dependent and uniparental vertical transmission, while the second addresses parasites transmitted vertically via both parents. For the first model, we ask how the addition of vertical transmission changes the coexistence criteria for parasites transmitted by a frequency-dependent horizontal route, and show that vertical transmission significantly broadens the conditions for parasite invasion. Host-parasite coexistence is further affected by the form of density-dependent host regulation. Numerical analyses demonstrate that within a host population, a parasite strain with horizontal frequency-dependent transmission can be driven to extinction by a parasite strain that is additionally transmitted vertically for a wide range of parameters. Although models of asexual host populations predict that vertical transmission alone cannot maintain a parasite over time, analysis of our second model shows that vertical transmission via both male and female parents can maintain a parasite at a stable equilibrium. These results correspond with the frequent co-occurrence of vertical with sexual transmission in nature and suggest that these transmission modes can lead to host-pathogen coexistence for a wide range of systems involving hosts with high reproductive rates.
Full Text
The Full Text of this article is available as a PDF (401.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fine P. E. Vectors and vertical transmission: an epidemiologic perspective. Ann N Y Acad Sci. 1975;266:173–194. doi: 10.1111/j.1749-6632.1975.tb35099.x. [DOI] [PubMed] [Google Scholar]
- Gonzalez J. P., Camicas J. L., Cornet J. P., Faye O., Wilson M. L. Sexual and transovarian transmission of Crimean-Congo haemorrhagic fever virus in Hyalomma truncatum ticks. Res Virol. 1992 Jan-Feb;143(1):23–28. doi: 10.1016/s0923-2516(06)80073-7. [DOI] [PubMed] [Google Scholar]
- Lipsitch M., Nowak M. A., Ebert D., May R. M. The population dynamics of vertically and horizontally transmitted parasites. Proc Biol Sci. 1995 Jun 22;260(1359):321–327. doi: 10.1098/rspb.1995.0099. [DOI] [PubMed] [Google Scholar]
- Lockhart A. B., Thrall P. H., Antonovics J. Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol Rev Camb Philos Soc. 1996 Aug;71(3):415–471. doi: 10.1111/j.1469-185x.1996.tb01281.x. [DOI] [PubMed] [Google Scholar]
- Nayar J. K., Rosen L., Knight J. W. Experimental vertical transmission of Saint Louis encephalitis virus by Florida mosquitoes. Am J Trop Med Hyg. 1986 Nov;35(6):1296–1301. doi: 10.4269/ajtmh.1986.35.1296. [DOI] [PubMed] [Google Scholar]
- Rosen L. Sexual transmission of dengue viruses by Aedes albopictus. Am J Trop Med Hyg. 1987 Sep;37(2):398–402. [PubMed] [Google Scholar]
- Tesh R. B., Modi G. B. Maintenance of Toscana virus in Phlebotomus perniciosus by vertical transmission. Am J Trop Med Hyg. 1987 Jan;36(1):189–193. doi: 10.4269/ajtmh.1987.36.189. [DOI] [PubMed] [Google Scholar]
- Thompson W. H., Beaty B. J. Venereal transmission of La Crosse virus from male to female Aedes triseriatus. Am J Trop Med Hyg. 1978 Jan;27(1 Pt 1):187–196. doi: 10.4269/ajtmh.1978.27.187. [DOI] [PubMed] [Google Scholar]
- Weigler B. J., Girjes A. A., White N. A., Kunst N. D., Carrick F. N., Lavin M. F. Aspects of the epidemiology of Chlamydia psittaci infection in a population of koalas (Phascolarctos cinereus) in southeastern Queensland, Australia. J Wildl Dis. 1988 Apr;24(2):282–291. doi: 10.7589/0090-3558-24.2.282. [DOI] [PubMed] [Google Scholar]