Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Jul 22;264(1384):1031–1036. doi: 10.1098/rspb.1997.0142

The role of visual field position in pattern-discrimination learning.

M Dill 1, M Fahle 1
PMCID: PMC1688537  PMID: 9263470

Abstract

Invariance of object recognition to translation in the visual field is a fundamental property of human pattern vision. In three experiments we investigated this capability by training subjects to distinguish between random checkerboard stimuli. We show that the improvement of discrimination performance does not transfer across the visual field if learning is restricted to a particular location in the retinal image. Accuracy after retinal translation shows no sign of decay over time and remains at the same level it had at the beginning of the training. It is suggested that in two-dimensional translation invariance-as in three-dimensional rotation invariance-the human visual system is relying on memory-intensive rather than computation-intensive processes. Multiple position- and stimulus-specific learning events may be required before recognition is independent of retinal location.

Full Text

The Full Text of this article is available as a PDF (235.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biederman I., Cooper E. E. Evidence for complete translational and reflectional invariance in visual object priming. Perception. 1991;20(5):585–593. doi: 10.1068/p200585. [DOI] [PubMed] [Google Scholar]
  2. Dill M., Heisenberg M. Visual pattern memory without shape recognition. Philos Trans R Soc Lond B Biol Sci. 1995 Aug 29;349(1328):143–152. doi: 10.1098/rstb.1995.0100. [DOI] [PubMed] [Google Scholar]
  3. Dill M., Wolf R., Heisenberg M. Visual pattern recognition in Drosophila involves retinotopic matching. Nature. 1993 Oct 21;365(6448):751–753. doi: 10.1038/365751a0. [DOI] [PubMed] [Google Scholar]
  4. Fahle M., Edelman S., Poggio T. Fast perceptual learning in hyperacuity. Vision Res. 1995 Nov;35(21):3003–3013. doi: 10.1016/0042-6989(95)00044-z. [DOI] [PubMed] [Google Scholar]
  5. Fahle M. Human pattern recognition: parallel processing and perceptual learning. Perception. 1994;23(4):411–427. doi: 10.1068/p230411. [DOI] [PubMed] [Google Scholar]
  6. Fiorentini A., Berardi N. Learning in grating waveform discrimination: specificity for orientation and spatial frequency. Vision Res. 1981;21(7):1149–1158. doi: 10.1016/0042-6989(81)90017-1. [DOI] [PubMed] [Google Scholar]
  7. Foster D. H., Kahn J. I. Internal representations and operations in the visual comparison of transformed patterns: effects of pattern point-inversion, position symmetry, and separation. Biol Cybern. 1985;51(5):305–312. doi: 10.1007/BF00336917. [DOI] [PubMed] [Google Scholar]
  8. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jüttner M., Rentschler I. Reduced perceptual dimensionality in extrafoveal vision. Vision Res. 1996 Apr;36(7):1007–1022. doi: 10.1016/0042-6989(95)00250-2. [DOI] [PubMed] [Google Scholar]
  10. Karni A., Sagi D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4966–4970. doi: 10.1073/pnas.88.11.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nazir T. A., O'Regan J. K. Some results on translation invariance in the human visual system. Spat Vis. 1990;5(2):81–100. doi: 10.1163/156856890x00011. [DOI] [PubMed] [Google Scholar]
  12. O'Regan J. K. Solving the "real" mysteries of visual perception: the world as an outside memory. Can J Psychol. 1992 Sep;46(3):461–488. doi: 10.1037/h0084327. [DOI] [PubMed] [Google Scholar]
  13. Olshausen B. A., Anderson C. H., Van Essen D. C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993 Nov;13(11):4700–4719. doi: 10.1523/JNEUROSCI.13-11-04700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ramachandran V. S. Learning-like phenomena in stereopsis. Nature. 1976 Jul 29;262(5567):382–384. doi: 10.1038/262382a0. [DOI] [PubMed] [Google Scholar]
  15. Rentschler I., Jüttner M., Caelli T. Probabilistic analysis of human supervised learning and classification. Vision Res. 1994 Mar;34(5):669–687. doi: 10.1016/0042-6989(94)90021-3. [DOI] [PubMed] [Google Scholar]
  16. Saslow M. G. Latency for saccadic eye movement. J Opt Soc Am. 1967 Aug;57(8):1030–1033. doi: 10.1364/josa.57.001030. [DOI] [PubMed] [Google Scholar]
  17. Shiu L. P., Pashler H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept Psychophys. 1992 Nov;52(5):582–588. doi: 10.3758/bf03206720. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES