Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Sep 22;264(1386):1303–1307. doi: 10.1098/rspb.1997.0180

Visual and socio-cognitive information processing in primate brain evolution.

T H Joffe 1, R I Dunbar 1
PMCID: PMC1688580  PMID: 9332015

Abstract

Social group size has been shown to correlate with neocortex size in primates. Here we use comparative analyses to show that social group size is independently correlated with the size of non-V1 neocortical areas, but not with other more proximate components of the visual system or with brain systems associated with emotional cueing (e.g. the amygdala). We argue that visual brain components serve as a social information 'input device' for socio-visual stimuli such as facial expressions, bodily gestures and visual status markers, while the non-visual neocortex serves as a 'processing device' whereby these social cues are encoded, interpreted and associated with stored information. However, the second appears to have greater overall importance because the size of the V1 visual area appears to reach an asymptotic size beyond which visual acuity and pattern recognition may not improve significantly. This is especially true of the great ape clade (including humans), that is known to use more sophisticated social cognitive strategies.

Full Text

The Full Text of this article is available as a PDF (96.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton R. A. Neocortex size and behavioural ecology in primates. Proc Biol Sci. 1996 Feb 22;263(1367):173–177. doi: 10.1098/rspb.1996.0028. [DOI] [PubMed] [Google Scholar]
  2. Bruce C., Desimone R., Gross C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol. 1981 Aug;46(2):369–384. doi: 10.1152/jn.1981.46.2.369. [DOI] [PubMed] [Google Scholar]
  3. Gross C. G., Rocha-Miranda C. E., Bender D. B. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol. 1972 Jan;35(1):96–111. doi: 10.1152/jn.1972.35.1.96. [DOI] [PubMed] [Google Scholar]
  4. Keverne E. B., Martel F. L., Nevison C. M. Primate brain evolution: genetic and functional considerations. Proc Biol Sci. 1996 Jun 22;263(1371):689–696. doi: 10.1098/rspb.1996.0103. [DOI] [PubMed] [Google Scholar]
  5. Perrett D. I., Rolls E. T., Caan W. Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47(3):329–342. doi: 10.1007/BF00239352. [DOI] [PubMed] [Google Scholar]
  6. Perrett D. I., Smith P. A., Mistlin A. J., Chitty A. J., Head A. S., Potter D. D., Broennimann R., Milner A. D., Jeeves M. A. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav Brain Res. 1985 Aug;16(2-3):153–170. doi: 10.1016/0166-4328(85)90089-0. [DOI] [PubMed] [Google Scholar]
  7. Rosenfeld S. A., Van Hoesen G. W. Face recognition in the rhesus monkey. Neuropsychologia. 1979;17(5):503–509. doi: 10.1016/0028-3932(79)90057-5. [DOI] [PubMed] [Google Scholar]
  8. Sawaguchi T. The size of the neocortex in relation to ecology and social structure in monkeys and apes. Folia Primatol (Basel) 1992;58(3):130–145. [PubMed] [Google Scholar]
  9. Stephan H., Frahm H., Baron G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol (Basel) 1981;35(1):1–29. doi: 10.1159/000155963. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES