Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Sep 22;264(1386):1287–1291. doi: 10.1098/rspb.1997.0178

Adaptation to the fitness costs of antibiotic resistance in Escherichia coli.

S J Schrag 1, V Perrot 1, B R Levin 1
PMCID: PMC1688596  PMID: 9332013

Abstract

Policies aimed at alleviating the growing problem of drug-resistant pathogens by restricting antimicrobial usage implicitly assume that resistance reduces the Darwinian fitness of pathogens in the absence of drugs. While fitness costs have been demonstrated for bacteria and viruses resistant to some chemotherapeutic agents, these costs are anticipated to decline during subsequent evolution. This has recently been observed in pathogens as diverse as HIV and Escherichia coli. Here we present evidence that these gentic adaptations to the costs of resistance can virtually preclude resistant lineages from reverting to sensitivity. We show that second site mutations which compensate for the substantial (14 and 18% per generation) fitness costs of streptomycin resistant (rpsL) mutations in E. coli create a genetic background in which streptomycin sensitive, rpsL+ alleles have a 4-30% per generation selective disadvantage relative to adapted, resistant strains. We also present evidence that similar compensatory mutations have been fixed in long-term streptomycin-resistant laboratory strains of E. coli and may account for the persistence of rpsL streptomycin resistance in populations maintained for more than 10,000 generations in the absence of the antibiotic. We discuss the public health implications of these and other experimental results that question whether the more prudent use of antimicrobial chemotherapy will lead to declines in the incidence of drug-resistant pathogenic microbes.

Full Text

The Full Text of this article is available as a PDF (108.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloch C. A., Rode C. K. Pathogenicity island evaluation in Escherichia coli K1 by crossing with laboratory strain K-12. Infect Immun. 1996 Aug;64(8):3218–3223. doi: 10.1128/iai.64.8.3218-3223.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borman A. M., Paulous S., Clavel F. Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. J Gen Virol. 1996 Mar;77(Pt 3):419–426. doi: 10.1099/0022-1317-77-3-419. [DOI] [PubMed] [Google Scholar]
  3. Boucher C. A., van Leeuwen R., Kellam P., Schipper P., Tijnagel J., Lange J. M., Larder B. A. Effects of discontinuation of zidovudine treatment on zidovudine sensitivity of human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother. 1993 Jul;37(7):1525–1530. doi: 10.1128/aac.37.7.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouma J. E., Lenski R. E. Evolution of a bacteria/plasmid association. Nature. 1988 Sep 22;335(6188):351–352. doi: 10.1038/335351a0. [DOI] [PubMed] [Google Scholar]
  5. Conlon C. P., Klenerman P., Edwards A., Larder B. A., Phillips R. E. Heterosexual transmission of human immunodeficiency virus type 1 variants associated with zidovudine resistance. J Infect Dis. 1994 Feb;169(2):411–415. doi: 10.1093/infdis/169.2.411. [DOI] [PubMed] [Google Scholar]
  6. Elena S. F., Cooper V. S., Lenski R. E. Punctuated evolution caused by selection of rare beneficial mutations. Science. 1996 Jun 21;272(5269):1802–1804. doi: 10.1126/science.272.5269.1802. [DOI] [PubMed] [Google Scholar]
  7. Kellam P., Boucher C. A., Tijnagel J. M., Larder B. A. Zidovudine treatment results in the selection of human immunodeficiency virus type 1 variants whose genotypes confer increasing levels of drug resistance. J Gen Virol. 1994 Feb;75(Pt 2):341–351. doi: 10.1099/0022-1317-75-2-341. [DOI] [PubMed] [Google Scholar]
  8. Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
  9. Lederberg S. Genetics of host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli. J Bacteriol. 1966 Mar;91(3):1029–1036. doi: 10.1128/jb.91.3.1029-1036.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lenski R. E. Quantifying fitness and gene stability in microorganisms. Biotechnology. 1991;15:173–192. doi: 10.1016/b978-0-409-90199-3.50015-2. [DOI] [PubMed] [Google Scholar]
  11. Lenski R. E., Simpson S. C., Nguyen T. T. Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol. 1994 Jun;176(11):3140–3147. doi: 10.1128/jb.176.11.3140-3147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lenski R. E., Travisano M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808–6814. doi: 10.1073/pnas.91.15.6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levin B. R., Lipsitch M., Perrot V., Schrag S., Antia R., Simonsen L., Walker N. M., Stewart F. M. The population genetics of antibiotic resistance. Clin Infect Dis. 1997 Jan;24 (Suppl 1):S9–16. doi: 10.1093/clinids/24.supplement_1.s9. [DOI] [PubMed] [Google Scholar]
  14. Levy S. B. Balancing the drug-resistance equation. Trends Microbiol. 1994 Oct;2(10):341–342. doi: 10.1016/0966-842x(94)90607-6. [DOI] [PubMed] [Google Scholar]
  15. Schrag S. J., Perrot V. Reducing antibiotic resistance. Nature. 1996 May 9;381(6578):120–121. doi: 10.1038/381120b0. [DOI] [PubMed] [Google Scholar]
  16. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Travisano M., Lenski R. E. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics. 1996 May;143(1):15–26. doi: 10.1093/genetics/143.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Travisano M., Mongold J. A., Bennett A. F., Lenski R. E. Experimental tests of the roles of adaptation, chance, and history in evolution. Science. 1995 Jan 6;267(5194):87–90. doi: 10.1126/science.7809610. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES