Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Nov 22;264(1388):1619–1627. doi: 10.1098/rspb.1997.0226

Ecological constraints drive social evolution in the African mole-rats.

C G Faulkes 1, N C Bennett 1, M W Bruford 1, H P O'Brien 1, G H Aguilar 1, J U Jarvis 1
PMCID: PMC1688729  PMID: 9404025

Abstract

The African mole-rats (family Bathyergidae) are subterranean hystricomorph rodents occurring in a variety of habitats and displaying levels of sociality which range from solitary to eusocial, making them a unique mammalian taxonomic group to test ecological influences on sociality. Here, we use an extensive DNA-based phylogeny and comparative analysis to investigate the relationship between ecology, sociality and evolution within the family. Mitochondrial cytochrome-b and 12s rRNA trees reveal that the solitary species are monophyletic when compared to the social species. The naked mole-rat (Heterocephalus glaber) is ancestral and divergent from the Damaraland mole-rat (Cryptomys damarensis), supporting previous findings that have suggested the multiple evolution of eusociality within the family. The Cryptomys genus is species-rich and contains taxa exhibiting different levels of sociality, which can be divided into two distinct clades. A total of seven independent comparisons were generated within the phylogeny, and three ecological variables were significantly correlated with social group size: geophyte density (p < 0.05), mean months per year of rainfall greater than 25 mm (p < 0.001), and the coefficient of rainfall variation (p = 0.001). These results support the food-aridity hypothesis for the evolution of highly social cooperative behaviour in the Bathyergidae, and are consistent with the current theoretical framework for skew theory.

Full Text

The Full Text of this article is available as a PDF (232.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard M. W., Honeycutt R. L. Nucleotide sequence variation in the mitochondrial 12S rRNA gene and the phylogeny of African mole-rats (Rodentia: Bathyergidae). Mol Biol Evol. 1992 Jan;9(1):27–40. doi: 10.1093/oxfordjournals.molbev.a040706. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  3. Burda H., Kawalika M. Evolution of eusociality in the Bathyergidae. The case of the giant mole rats (Cryptomys mechowi). Naturwissenschaften. 1993 May;80(5):235–237. doi: 10.1007/BF01175742. [DOI] [PubMed] [Google Scholar]
  4. Faulkes C. G., Abbott D. H., O'Brien H. P., Lau L., Roy M. R., Wayne R. K., Bruford M. W. Micro- and macrogeographical genetic structure of colonies of naked mole-rats Heterocephalus glaber. Mol Ecol. 1997 Jul;6(7):615–628. doi: 10.1046/j.1365-294x.1997.00227.x. [DOI] [PubMed] [Google Scholar]
  5. Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
  6. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
  7. Jarvis J. U. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science. 1981 May 1;212(4494):571–573. doi: 10.1126/science.7209555. [DOI] [PubMed] [Google Scholar]
  8. Ma D. P., Zharkikh A., Graur D., VandeBerg J. L., Li W. H. Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. J Mol Evol. 1993 Apr;36(4):327–334. doi: 10.1007/BF00182180. [DOI] [PubMed] [Google Scholar]
  9. Macholán M., Burda H., Zima J., Mísek I., Kawalika M. Karyotype of the giant mole-rat, Cryptomys mechowi (Rodentia, Bathyergidae). Cytogenet Cell Genet. 1993;64(3-4):261–263. doi: 10.1159/000133589. [DOI] [PubMed] [Google Scholar]
  10. Nedbal M. A., Allard M. W., Honeycutt R. L. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol. 1994 Sep;3(3):206–220. doi: 10.1006/mpev.1994.1023. [DOI] [PubMed] [Google Scholar]
  11. O'Riain M. J., Jarvis J. U., Faulkes C. G. A dispersive morph in the naked mole-rat. Nature. 1996 Apr 18;380(6575):619–621. doi: 10.1038/380619a0. [DOI] [PubMed] [Google Scholar]
  12. Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
  13. Reeve H. K., Westneat D. F., Noon W. A., Sherman P. W., Aquadro C. F. DNA "fingerprinting" reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2496–2500. doi: 10.1073/pnas.87.7.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES