Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Dec 22;264(1389):1757–1762. doi: 10.1098/rspb.1997.0243

The evolution of virus-induced apoptosis.

D C Krakauer 1, R J Payne 1
PMCID: PMC1688746  PMID: 9447732

Abstract

Viruses from several different families are able to exploit their host's cell death programmes so as to maximize viral fitness. Consideration of the evolution of such strategies has lead to the suggestion that the virus should inhibit apoptosis, in order to prolong the life of the cell and thereby maximize the number of progeny virions. The host, on the other hand, should stimulate apoptosis thereby inhibiting viral growth and blocking viral spread. For example, the function of the latent membrane protein I (LMPI) of the Epstein-Barr virus and the bcl-2 homologue gene A179L of African swine fever virus is to inhibit apoptosis. However, in other cases it is the virus that stimulates cell death or the host that benefits from inhibiting apoptosis, such as in fatal alphavirus encephalitis. This has been explained by assuming that virus-induced apoptosis in non-regenerating cells would be detrimental to the host. We present a mathematical framework for understanding virus-induced apoptosis which accounts for these two opposite solutions to virus infection with respect to the mode of virus replication and the life cycle of the target cell.

Full Text

The Full Text of this article is available as a PDF (248.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameisen J. C., Idziorek T., Billaut-Mulot O., Loyens M., Tissier J. P., Potentier A., Ouaissi A. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ. 1995 Oct;2(4):285–300. [PubMed] [Google Scholar]
  2. Ameisen J. C. The origin of programmed cell death. Science. 1996 May 31;272(5266):1278–1279. doi: 10.1126/science.272.5266.1278. [DOI] [PubMed] [Google Scholar]
  3. Chou J., Roizman B. The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3266–3270. doi: 10.1073/pnas.89.8.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clem R. J., Fechheimer M., Miller L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science. 1991 Nov 29;254(5036):1388–1390. doi: 10.1126/science.1962198. [DOI] [PubMed] [Google Scholar]
  5. Clouston W. M., Kerr J. F. Apoptosis, lymphocytotoxicity and the containment of viral infections. Med Hypotheses. 1985 Dec;18(4):399–404. doi: 10.1016/0306-9877(85)90107-0. [DOI] [PubMed] [Google Scholar]
  6. Finlay B. B., Cossart P. Exploitation of mammalian host cell functions by bacterial pathogens. Science. 1997 May 2;276(5313):718–725. doi: 10.1126/science.276.5313.718. [DOI] [PubMed] [Google Scholar]
  7. Frost S. D., Michie C. A. Lymphocyte dynamics, apoptosis and HIV infection. Trends Microbiol. 1996 Feb;4(2):77–82. doi: 10.1016/0966-842X(96)81516-2. [DOI] [PubMed] [Google Scholar]
  8. Gougeon M. L. Apoptosis in AIDS. Genetic control and relevance for AIDS pathogenesis. Biochem Soc Trans. 1996 Nov;24(4):1055–1058. doi: 10.1042/bst0241055. [DOI] [PubMed] [Google Scholar]
  9. Gregory C. D., Dive C., Henderson S., Smith C. A., Williams G. T., Gordon J., Rickinson A. B. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991 Feb 14;349(6310):612–614. doi: 10.1038/349612a0. [DOI] [PubMed] [Google Scholar]
  10. Levine B., Goldman J. E., Jiang H. H., Griffin D. E., Hardwick J. M. Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4810–4815. doi: 10.1073/pnas.93.10.4810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine B., Huang Q., Isaacs J. T., Reed J. C., Griffin D. E., Hardwick J. M. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature. 1993 Feb 25;361(6414):739–742. doi: 10.1038/361739a0. [DOI] [PubMed] [Google Scholar]
  12. Lowe S. W., Ruley H. E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 1993 Apr;7(4):535–545. doi: 10.1101/gad.7.4.535. [DOI] [PubMed] [Google Scholar]
  13. Nowak M. A., Bangham C. R. Population dynamics of immune responses to persistent viruses. Science. 1996 Apr 5;272(5258):74–79. doi: 10.1126/science.272.5258.74. [DOI] [PubMed] [Google Scholar]
  14. Ray C. A., Black R. A., Kronheim S. R., Greenstreet T. A., Sleath P. R., Salvesen G. S., Pickup D. J. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell. 1992 May 15;69(4):597–604. doi: 10.1016/0092-8674(92)90223-y. [DOI] [PubMed] [Google Scholar]
  15. Sela-Donenfeld D., Korner M., Pick M., Eldor A., Panet A. Programmed endothelial cell death induced by an avian hemangioma retrovirus is density dependent. Virology. 1996 Sep 1;223(1):233–237. doi: 10.1006/viro.1996.0472. [DOI] [PubMed] [Google Scholar]
  16. Tollefson A. E., Ryerse J. S., Scaria A., Hermiston T. W., Wold W. S. The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology. 1996 Jun 1;220(1):152–162. doi: 10.1006/viro.1996.0295. [DOI] [PubMed] [Google Scholar]
  17. Zakeri Z., Bursch W., Tenniswood M., Lockshin R. A. Cell death: programmed, apoptosis, necrosis, or other? Cell Death Differ. 1995 Apr;2(2):87–96. [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES