Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Jan 7;265(1390):71–77. doi: 10.1098/rspb.1998.0266

Improving vision: neural compensation for optical defocus.

M Mon-Williams 1, J R Tresilian 1, N C Strang 1, P Kochhar 1, J P Wann 1
PMCID: PMC1688761  PMID: 9470217

Abstract

Anecdotal reports abound of vision improving in myopia after a period of time without refractive correction. We explored whether this effect is due to an increased tolerance of blur or whether it reflects a genuine improvement in vision. Our results clearly demonstrated a marked improvement in the ability to detect and recognize letters following prolonged exposure to optical defocus. We ensured that ophthalmic change did not occur, and thus the phenomenon must be due to a neural compensation for the defocus condition. A second set of experiments measured contrast sensitivity and found a decrease in sensitivity to mid-range (5-25 cycles deg-1) spatial frequencies following exposure to optical defocus. The results of the two experiments may be explained by the unmasking of low contrast, high spatial frequency information via a two-stage process: (1) the pattern of relative channel outputs is maintained during optical defocus by the depression of mid-range spatial frequency channels; (2) channel outputs are pooled prior to the production of the final percept. The second set of experiments also provided some evidence of inter-ocular transfer, indicating that the adaptation process is occurring at binocular sites in the cortex.

Full Text

The Full Text of this article is available as a PDF (403.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey I. L., Lovie J. E. New design principles for visual acuity letter charts. Am J Optom Physiol Opt. 1976 Nov;53(11):740–745. doi: 10.1097/00006324-197611000-00006. [DOI] [PubMed] [Google Scholar]
  2. Blakemore C., Sutton P. Size adaptation: a new aftereffect. Science. 1969 Oct 10;166(3902):245–247. doi: 10.1126/science.166.3902.245. [DOI] [PubMed] [Google Scholar]
  3. Campbell F. W., Green D. G. Optical and retinal factors affecting visual resolution. J Physiol. 1965 Dec;181(3):576–593. doi: 10.1113/jphysiol.1965.sp007784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dealy R. S., Tolhurst D. J. Is spatial adaptation an after-effect of prolonged inhibition? J Physiol. 1974 Aug;241(1):261–270. doi: 10.1113/jphysiol.1974.sp010652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Field D. J. Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A. 1987 Dec;4(12):2379–2394. doi: 10.1364/josaa.4.002379. [DOI] [PubMed] [Google Scholar]
  6. Georgeson M. A., Harris M. G. Spatial selectivity of contrast adaptation: models and data. Vision Res. 1984;24(7):729–741. doi: 10.1016/0042-6989(84)90214-1. [DOI] [PubMed] [Google Scholar]
  7. Georgeson M. A., Sullivan G. D. Contrast constancy: deblurring in human vision by spatial frequency channels. J Physiol. 1975 Nov;252(3):627–656. doi: 10.1113/jphysiol.1975.sp011162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenlee M. W., Magnussen S. Interactions among spatial frequency and orientation channels adapted concurrently. Vision Res. 1988;28(12):1303–1310. doi: 10.1016/0042-6989(88)90061-2. [DOI] [PubMed] [Google Scholar]
  9. Harmon L. D., Julesz B. Masking in visual recognition: effects of two-dimensional filtered noise. Science. 1973 Jun 15;180(4091):1194–1197. doi: 10.1126/science.180.4091.1194. [DOI] [PubMed] [Google Scholar]
  10. Jamar J. H., Koenderink J. J. Contrast detection and detection of contrast modulation for noise gratings. Vision Res. 1985;25(4):511–521. doi: 10.1016/0042-6989(85)90154-3. [DOI] [PubMed] [Google Scholar]
  11. McGraw P. V., Winn B. Glasgow Acuity Cards: a new test for the measurement of letter acuity in children. Ophthalmic Physiol Opt. 1993 Oct;13(4):400–404. doi: 10.1111/j.1475-1313.1993.tb00499.x. [DOI] [PubMed] [Google Scholar]
  12. Morgan M. J., Watt R. J. Spatial frequency interference effects and interpolation in vernier acuity. Vision Res. 1984;24(12):1911–1919. doi: 10.1016/0042-6989(84)90025-7. [DOI] [PubMed] [Google Scholar]
  13. Pesudovs K., Brennan N. A. Decreased uncorrected vision after a period of distance fixation with spectacle wear. Optom Vis Sci. 1993 Jul;70(7):528–531. doi: 10.1097/00006324-199307000-00002. [DOI] [PubMed] [Google Scholar]
  14. Tolhurst D. J., Tadmor Y., Chao T. Amplitude spectra of natural images. Ophthalmic Physiol Opt. 1992 Apr;12(2):229–232. doi: 10.1111/j.1475-1313.1992.tb00296.x. [DOI] [PubMed] [Google Scholar]
  15. Watt R. J., Morgan M. J. A theory of the primitive spatial code in human vision. Vision Res. 1985;25(11):1661–1674. doi: 10.1016/0042-6989(85)90138-5. [DOI] [PubMed] [Google Scholar]
  16. Watt R. J., Morgan M. J. Spatial filters and the localization of luminance changes in human vision. Vision Res. 1984;24(10):1387–1397. doi: 10.1016/0042-6989(84)90194-9. [DOI] [PubMed] [Google Scholar]
  17. Watt R. J., Morgan M. J. The recognition and representation of edge blur: evidence for spatial primitives in human vision. Vision Res. 1983;23(12):1465–1477. doi: 10.1016/0042-6989(83)90158-x. [DOI] [PubMed] [Google Scholar]
  18. Woods R. L., Bradley A., Atchison D. A. Consequences of monocular diplopia for the contrast sensitivity function. Vision Res. 1996 Nov;36(22):3587–3596. doi: 10.1016/0042-6989(96)00091-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES