Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Jan 22;265(1391):97–103. doi: 10.1098/rspb.1998.0269

Mammalian sperm morphometry.

M J Gage 1
PMCID: PMC1688860  PMID: 9474794

Abstract

Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus.

Full Text

The Full Text of this article is available as a PDF (342.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball M. A., Parker G. A. Sperm competition games: external fertilization and "adaptive"' infertility. J Theor Biol. 1996 May 21;180(2):141–150. doi: 10.1006/jtbi.1996.0090. [DOI] [PubMed] [Google Scholar]
  2. Breed W. G. Variation in sperm morphology in the Australian rodent genus, Pseudomys (Muridae). Cell Tissue Res. 1983;229(3):611–625. doi: 10.1007/BF00207701. [DOI] [PubMed] [Google Scholar]
  3. Briskie J. V., Montgomerie R. Sperm size and sperm competition in birds. Proc Biol Sci. 1992 Feb 22;247(1319):89–95. doi: 10.1098/rspb.1992.0013. [DOI] [PubMed] [Google Scholar]
  4. Cardullo R. A., Baltz J. M. Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil Cytoskeleton. 1991;19(3):180–188. doi: 10.1002/cm.970190306. [DOI] [PubMed] [Google Scholar]
  5. Cummins J. M., Woodall P. F. On mammalian sperm dimensions. J Reprod Fertil. 1985 Sep;75(1):153–175. doi: 10.1530/jrf.0.0750153. [DOI] [PubMed] [Google Scholar]
  6. Erickson R. P. Post-meiotic gene expression. Trends Genet. 1990 Aug;6(8):264–269. doi: 10.1016/0168-9525(90)90209-o. [DOI] [PubMed] [Google Scholar]
  7. Gomendio M., Roldan E. R. Coevolution between male ejaculates and female reproductive biology in eutherian mammals. Proc Biol Sci. 1993 Apr 22;252(1333):7–12. doi: 10.1098/rspb.1993.0039. [DOI] [PubMed] [Google Scholar]
  8. Gomendio M., Roldan E. R. Sperm competition influences sperm size in mammals. Proc Biol Sci. 1991 Mar 22;243(1308):181–185. doi: 10.1098/rspb.1991.0029. [DOI] [PubMed] [Google Scholar]
  9. Green D. P. Sperm thrusts and the problem of penetration. Biol Rev Camb Philos Soc. 1988 Feb;63(1):79–105. doi: 10.1111/j.1469-185x.1988.tb00469.x. [DOI] [PubMed] [Google Scholar]
  10. Harcourt A. H., Harvey P. H., Larson S. G., Short R. V. Testis weight, body weight and breeding system in primates. Nature. 1981 Sep 3;293(5827):55–57. doi: 10.1038/293055a0. [DOI] [PubMed] [Google Scholar]
  11. Harvey P. H. On rethinking allometry. J Theor Biol. 1982 Mar 7;95(1):37–41. doi: 10.1016/0022-5193(82)90285-5. [DOI] [PubMed] [Google Scholar]
  12. Hosken D. J. Sperm competition in bats. Proc Biol Sci. 1997 Mar 22;264(1380):385–392. doi: 10.1098/rspb.1997.0055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz D. F., Drobnis E. Z., Overstreet J. W. Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res. 1989 Apr;22(4):443–469. doi: 10.1002/mrd.1120220410. [DOI] [PubMed] [Google Scholar]
  14. Manning J. T., Chamberlain A. T. Sib competition and sperm competitiveness: an answer to 'why so many sperms?' and the recombination/sperm number correlation. Proc Biol Sci. 1994 May 23;256(1346):177–182. doi: 10.1098/rspb.1994.0067. [DOI] [PubMed] [Google Scholar]
  15. Novacek M. J. Mammalian phylogeny: shaking the tree. Nature. 1992 Mar 12;356(6365):121–125. doi: 10.1038/356121a0. [DOI] [PubMed] [Google Scholar]
  16. Olmo E. Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem. 1983;27(4):227–256. [PubMed] [Google Scholar]
  17. Parker G. A., Begon M. E. Sperm competition games: sperm size and number under gametic control. Proc Biol Sci. 1993 Sep 22;253(1338):255–262. doi: 10.1098/rspb.1993.0111. [DOI] [PubMed] [Google Scholar]
  18. Parker G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J Theor Biol. 1982 May 21;96(2):281–294. doi: 10.1016/0022-5193(82)90225-9. [DOI] [PubMed] [Google Scholar]
  19. Pease P. E. Tolerated infection with the sub-bacterial phase of Listeria. Nature. 1967 Aug 26;215(5104):936–938. doi: 10.1038/215936a0. [DOI] [PubMed] [Google Scholar]
  20. Ward W. S., Coffey D. S. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991 Apr;44(4):569–574. doi: 10.1095/biolreprod44.4.569. [DOI] [PubMed] [Google Scholar]
  21. Woolley D. M., Beatty R. A. Inheritance of midpiece length in mouse spermatozoa. Nature. 1967 Jul 1;215(5096):94–95. doi: 10.1038/215094a0. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
9474794s1.pdf (58KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES