Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Jan 22;265(1391):155–165. doi: 10.1098/rspb.1998.0277

Modelling variability in lymphatic filariasis: macrofilarial dynamics in the Brugia pahangi--cat model.

E Michael 1, B T Grenfell 1, V S Isham 1, D A Denham 1, D A Bundy 1
PMCID: PMC1688862  PMID: 9474798

Abstract

A striking feature of lymphatic filariasis is the considerable heterogeneity in infection burden observed between hosts, which greatly complicates the analysis of the population dynamics of the disease. Here, we describe the first application of the moment closure equation approach to model the sources and the impact of this heterogeneity for macrofilarial population dynamics. The analysis is based on the closest laboratory equivalent of the life cycle and immunology of infection in humans--cats chronically infected with the filarial nematode Brugia pahangi. Two sets of long-term experiments are analysed: hosts given either single primary infections or given repeat infections. We begin by quantifying changes in the mean and aggregation of adult parasites (inversely measured by the negative binomial parameter, kappa in cohorts of hosts using generalized linear models. We then apply simple stochastic models to interpret observed patterns. The models and empirical data indicate that parasite aggregation tracks the decline in the mean burden with host age in primary infections. Conversely, in repeat infections, aggregation increases as the worm burden declines with experience of infection. The results show that the primary infection variability is consistent with heterogeneities in parasite survival between hosts. By contrast, the models indicate that the reduction in parasite variability with time in repeat infections is most likely due to the 'filtering' effect of a strong, acquired immune response, which gradually acts to remove the initial variability generated by heterogeneities in larval mortality. We discuss this result in terms of the homogenizing effect of host immunity-driven density-dependence on macrofilarial burden in older hosts.

Full Text

The Full Text of this article is available as a PDF (593.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaral F., Dreyer G., Figueredo-Silva J., Noroes J., Cavalcanti A., Samico S. C., Santos A., Coutinho A. Live adult worms detected by ultrasonography in human Bancroftian filariasis. Am J Trop Med Hyg. 1994 Jun;50(6):753–757. doi: 10.4269/ajtmh.1994.50.753. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. M., Gordon D. M. Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology. 1982 Oct;85(Pt 2):373–398. doi: 10.1017/s0031182000055347. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. M., Michel J. F. Density-dependent survival in populations of Ostertagia ostertagi. Int J Parasitol. 1977 Aug;7(4):321–329. doi: 10.1016/0020-7519(77)90041-8. [DOI] [PubMed] [Google Scholar]
  4. Baldwin C. I., de Medeiros F., Denham D. A. IgE responses in cats infected with Brugia pahangi. Parasite Immunol. 1993 May;15(5):291–296. doi: 10.1111/j.1365-3024.1993.tb00612.x. [DOI] [PubMed] [Google Scholar]
  5. Berding C., Keymer A. E., Murray J. D., Slater A. F. The population dynamics of acquired immunity to helminth infection. J Theor Biol. 1986 Oct 21;122(4):459–471. doi: 10.1016/s0022-5193(86)80186-2. [DOI] [PubMed] [Google Scholar]
  6. Bundy D. A., Grenfell B. T., Rajagopalan P. K. Immunoepidemiology of lymphatic filariasis: the relationship between infection and disease. Immunol Today. 1991 Mar;12(3):A71–A75. doi: 10.1016/S0167-5699(05)80021-0. [DOI] [PubMed] [Google Scholar]
  7. Crombie J. A., Anderson R. M. Population dynamics of Schistosoma mansoni in mice repeatedly exposed to infection. Nature. 1985 Jun 6;315(6019):491–493. doi: 10.1038/315491a0. [DOI] [PubMed] [Google Scholar]
  8. Das P. K., Manoharan A., Srividya A., Grenfell B. T., Bundy D. A., Vanamail P. Frequency distribution of Wuchereria bancrofti microfilariae in human populations and its relationships with age and sex. Parasitology. 1990 Dec;101(Pt 3):429–434. doi: 10.1017/s0031182000060625. [DOI] [PubMed] [Google Scholar]
  9. Denham D. A., Fletcher C. The cat infected with Brugia pahangi as a model of human filariasis. Ciba Found Symp. 1987;127:225–235. doi: 10.1002/9780470513446.ch15. [DOI] [PubMed] [Google Scholar]
  10. Denham D. A., McGreevy P. B., Suswillo R. R., Rogers R. The resistance to re-infection of cats repeatedly inoculated with infective larvae of Brugia pahangi. Parasitology. 1983 Feb;86(Pt 1):11–18. doi: 10.1017/s0031182000057127. [DOI] [PubMed] [Google Scholar]
  11. Denham D. A., Medeiros F., Baldwin C., Kumar H., Midwinter I. C., Birch D. W., Smail A. Repeated infection of cats with Brugia pahangi: parasitological observations. Parasitology. 1992 Jun;104(Pt 3):415–420. doi: 10.1017/s0031182000063666. [DOI] [PubMed] [Google Scholar]
  12. Denham D. A., Ponnudurai T., Nelson G. S., Guy F., Rogers R. Studies with Brugia pahangi. I. Parasitological observations on primary infections of cats (Felis catus). Int J Parasitol. 1972 Jun;2(2):239–247. doi: 10.1016/0020-7519(72)90012-4. [DOI] [PubMed] [Google Scholar]
  13. Denham D. A., Ponnudurai T., Nelson G. S., Rogers R., Guy F. Studies with Brugia pahangi. II. The effect of repeated infection on parasite levels in cats. Int J Parasitol. 1972 Nov;2(4):401–407. doi: 10.1016/0020-7519(72)90084-7. [DOI] [PubMed] [Google Scholar]
  14. Dreyer G., Amaral F., Noroes J., Medeiros Z. Ultrasonographic evidence for stability of adult worm location in bancroftian filariasis. Trans R Soc Trop Med Hyg. 1994 Sep-Oct;88(5):558–558. doi: 10.1016/0035-9203(94)90162-7. [DOI] [PubMed] [Google Scholar]
  15. Grenfell B. T., Das P. K., Rajagopalan P. K., Bundy D. A. Frequency distribution of lymphatic filariasis microfilariae in human populations: population processes and statistical estimation. Parasitology. 1990 Dec;101(Pt 3):417–427. doi: 10.1017/s0031182000060613. [DOI] [PubMed] [Google Scholar]
  16. Grenfell B. T., Michael E., Denham D. A. A model for the dynamics of human lymphatic filariasis. Parasitol Today. 1991 Nov;7(11):318–323. doi: 10.1016/0169-4758(91)90270-x. [DOI] [PubMed] [Google Scholar]
  17. Grenfell B. T., Smith G., Anderson R. M. A mathematical model of the population biology of Ostertagia ostertagi in calves and yearlings. Parasitology. 1987 Oct;95(Pt 2):389–406. doi: 10.1017/s0031182000057826. [DOI] [PubMed] [Google Scholar]
  18. Grenfell B. T., Smith G., Anderson R. M. The regulation of Ostertagia ostertagi populations in calves: the effect of past and current experience of infection on proportional establishment and parasite survival. Parasitology. 1987 Oct;95(Pt 2):363–372. doi: 10.1017/s0031182000057802. [DOI] [PubMed] [Google Scholar]
  19. Grenfell B. T., Wilson K., Isham V. S., Boyd H. E., Dietz K. Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode-ruminant interactions as a case study. Parasitology. 1995;111 (Suppl):S135–S151. doi: 10.1017/s0031182000075867. [DOI] [PubMed] [Google Scholar]
  20. Isham V. Assessing the variability of stochastic epidemics. Math Biosci. 1991 Dec;107(2):209–224. doi: 10.1016/0025-5564(91)90005-4. [DOI] [PubMed] [Google Scholar]
  21. Kretzschmar M., Adler F. R. Aggregated distributions in models for patchy populations. Theor Popul Biol. 1993 Feb;43(1):1–30. doi: 10.1006/tpbi.1993.1001. [DOI] [PubMed] [Google Scholar]
  22. Kretzschmar M. Persistent solutions in a model for parasitic infections. J Math Biol. 1989;27(5):549–573. doi: 10.1007/BF00288434. [DOI] [PubMed] [Google Scholar]
  23. Mahanty S., Nutman T. B. Immunoregulation in human lymphatic filariasis: the role of interleukin 10. Parasite Immunol. 1995 Aug;17(8):385–392. doi: 10.1111/j.1365-3024.1995.tb00906.x. [DOI] [PubMed] [Google Scholar]
  24. Maizels R. M., Bundy D. A., Selkirk M. E., Smith D. F., Anderson R. M. Immunological modulation and evasion by helminth parasites in human populations. Nature. 1993 Oct 28;365(6449):797–805. doi: 10.1038/365797a0. [DOI] [PubMed] [Google Scholar]
  25. Maizels R. M., Sartono E., Kurniawan A., Partono F., Selkirk M. E., Yazdanbakhsh M. T-cell activation and the balance of antibody isotypes in human lymphatic filariasis. Parasitol Today. 1995 Feb;11(2):50–56. doi: 10.1016/0169-4758(95)80116-2. [DOI] [PubMed] [Google Scholar]
  26. Medley G. F. Which comes first in host-parasite systems: density dependence or parasite distribution? Parasitol Today. 1992 Oct;8(10):321–322. doi: 10.1016/0169-4758(92)90061-6. [DOI] [PubMed] [Google Scholar]
  27. Michael E., Bundy D. A., Grenfell B. T. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology. 1996 Apr;112(Pt 4):409–428. doi: 10.1017/s0031182000066646. [DOI] [PubMed] [Google Scholar]
  28. More S. J., Copeman D. B. A highly specific and sensitive monoclonal antibody-based ELISA for the detection of circulating antigen in bancroftian filariasis. Trop Med Parasitol. 1990 Dec;41(4):403–406. [PubMed] [Google Scholar]
  29. Ottesen E. A. The Wellcome Trust Lecture. Infection and disease in lymphatic filariasis: an immunological perspective. Parasitology. 1992;104 (Suppl):S71–S79. doi: 10.1017/s0031182000075259. [DOI] [PubMed] [Google Scholar]
  30. Pacala S. W., Dobson A. P. The relation between the number of parasites/host and host age: population dynamic causes and maximum likelihood estimation. Parasitology. 1988 Feb;96(Pt 1):197–210. doi: 10.1017/s0031182000081762. [DOI] [PubMed] [Google Scholar]
  31. Park C. B. Microfilaria density distribution in the human population and its infectivity index for the mosquito population. Parasitology. 1988 Apr;96(Pt 2):265–271. doi: 10.1017/s0031182000058261. [DOI] [PubMed] [Google Scholar]
  32. Plaisier A. P., van Oortmarssen G. J., Habbema J. D., Remme J., Alley E. S. ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis. Comput Methods Programs Biomed. 1990 Jan;31(1):43–56. doi: 10.1016/0169-2607(90)90030-d. [DOI] [PubMed] [Google Scholar]
  33. Scott M. E. Temporal changes in aggregation: a laboratory study. Parasitology. 1987 Jun;94(Pt 3):583–595. doi: 10.1017/s0031182000055918. [DOI] [PubMed] [Google Scholar]
  34. Suswillo R. R., Denham D. A., McGreevy P. B. The number and distribution of Brugia pahangi in cats at different times after a primary infection. Acta Trop. 1982 Jun;39(2):151–156. [PubMed] [Google Scholar]
  35. Turner P., Copeman B., Gerisi D., Speare R. A comparison of the Og4C3 antigen capture ELISA, the Knott test, an IgG4 assay and clinical signs, in the diagnosis of Bancroftian filariasis. Trop Med Parasitol. 1993 Mar;44(1):45–48. [PubMed] [Google Scholar]
  36. Wassom D. L., Dick T. A., Arnason N., Strickland D., Grundmann A. W. Host genetics: a key factor in regulating the distribution of parasites in natural host populations. J Parasitol. 1986 Apr;72(2):334–337. [PubMed] [Google Scholar]
  37. Weil G. J. Parasite antigenemia in lymphatic filariasis. Exp Parasitol. 1990 Oct;71(3):353–356. doi: 10.1016/0014-4894(90)90042-b. [DOI] [PubMed] [Google Scholar]
  38. Wenk P. The vector host link in filariasis. Ann Trop Med Parasitol. 1991 Feb;85(1):139–147. doi: 10.1080/00034983.1991.11812540. [DOI] [PubMed] [Google Scholar]
  39. Wilson K., Grenfell B. T. Generalized linear modelling for parasitologists. Parasitol Today. 1997 Jan;13(1):33–38. doi: 10.1016/s0169-4758(96)40009-6. [DOI] [PubMed] [Google Scholar]
  40. Woolhouse M. E. A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunol. 1992 Nov;14(6):563–578. doi: 10.1111/j.1365-3024.1992.tb00029.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES