Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Feb 7;265(1392):243–248. doi: 10.1098/rspb.1998.0288

Inbreeding, fluctuating asymmetry, and ejaculate quality in an endangered ungulate.

E R Roldan 1, J Cassinello 1, T Abaigar 1, M Gomendio 1
PMCID: PMC1688876  PMID: 9493409

Abstract

An ever-increasing number of species are suffering marked reductions in population size as a consequence of human activities. To understand the impact of these changes it is essential to assess how small population size affects individual fitness and the viability of populations. This issue acquires special relevance among endangered species in which numbers have decreased to such an extent that captive breeding must be established with a few founders. A major risk associated with small population size is inbreeding depression. The effects of inbreeding upon male reproductive traits are the subject of an ongoing controversy, since the evidence linking lack of genetic variability and poor ejaculate quality at the population level has been criticized recently by several authors. We report that among Gazella cuvieri males, inbreeding coefficient shows a strong inverse relationship with ejaculate quality. Furthermore, the degree of fluctuating asymmetry is positively related to the coefficient of inbreeding and negatively related to the proportion of normal sperm, suggesting that it is a reliable indicator of genetic stress and of ejaculate quality.

Full Text

The Full Text of this article is available as a PDF (256.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkhead T. R., Fletcher F. Male phenotype and ejaculate quality in the zebra finch Taeniopygia guttata. Proc Biol Sci. 1995 Dec 22;262(1365):329–334. doi: 10.1098/rspb.1995.0213. [DOI] [PubMed] [Google Scholar]
  2. Caro T. M., Laurenson M. K. Ecological and genetic factors in conservation: a cautionary tale. Science. 1994 Jan 28;263(5146):485–486. doi: 10.1126/science.8290956. [DOI] [PubMed] [Google Scholar]
  3. Drobnis E. Z., Overstreet J. W. Natural history of mammalian spermatozoa in the female reproductive tract. Oxf Rev Reprod Biol. 1992;14:1–45. [PubMed] [Google Scholar]
  4. Eggert-Kruse W., Schwarz H., Rohr G., Demirakca T., Tilgen W., Runnebaum B. Sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. Hum Reprod. 1996 Jan;11(1):139–146. doi: 10.1093/oxfordjournals.humrep.a019007. [DOI] [PubMed] [Google Scholar]
  5. Frankham R. Conservation genetics. Annu Rev Genet. 1995;29:305–327. doi: 10.1146/annurev.ge.29.120195.001513. [DOI] [PubMed] [Google Scholar]
  6. Gomendio M., Roldan E. R. Coevolution between male ejaculates and female reproductive biology in eutherian mammals. Proc Biol Sci. 1993 Apr 22;252(1333):7–12. doi: 10.1098/rspb.1993.0039. [DOI] [PubMed] [Google Scholar]
  7. Handel M. A. Genetic control of spermatogenesis in mice. Results Probl Cell Differ. 1987;15:1–62. doi: 10.1007/978-3-540-47184-4_1. [DOI] [PubMed] [Google Scholar]
  8. Jiménez J. A., Hughes K. A., Alaks G., Graham L., Lacy R. C. An experimental study of inbreeding depression in a natural habitat. Science. 1994 Oct 14;266(5183):271–273. doi: 10.1126/science.7939661. [DOI] [PubMed] [Google Scholar]
  9. Keller L. F., Arcese P., Smith J. N., Hochachka W. M., Stearns S. C. Selection against inbred song sparrows during a natural population bottleneck. Nature. 1994 Nov 24;372(6504):356–357. doi: 10.1038/372356a0. [DOI] [PubMed] [Google Scholar]
  10. May R. M. Population genetics. The cheetah controversy. Nature. 1995 Mar 23;374(6520):309–310. doi: 10.1038/374309a0. [DOI] [PubMed] [Google Scholar]
  11. Menotti-Raymond M., O'Brien S. J. Dating the genetic bottleneck of the African cheetah. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3172–3176. doi: 10.1073/pnas.90.8.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Brien S. J., Roelke M. E., Marker L., Newman A., Winkler C. A., Meltzer D., Colly L., Evermann J. F., Bush M., Wildt D. E. Genetic basis for species vulnerability in the cheetah. Science. 1985 Mar 22;227(4693):1428–1434. doi: 10.1126/science.2983425. [DOI] [PubMed] [Google Scholar]
  13. O'Brien S. J., Wildt D. E., Bush M., Caro T. M., FitzGibbon C., Aggundey I., Leakey R. E. East African cheetahs: evidence for two population bottlenecks? Proc Natl Acad Sci U S A. 1987 Jan;84(2):508–511. doi: 10.1073/pnas.84.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'brien S. J., Wildt D. E., Goldman D., Merril C. R., Bush M. The cheetah is depauperate in genetic variation. Science. 1983 Jul 29;221(4609):459–462. doi: 10.1126/science.221.4609.459. [DOI] [PubMed] [Google Scholar]
  15. Parsons P. A. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity (Edinb) 1992 Apr;68(Pt 4):361–364. doi: 10.1038/hdy.1992.51. [DOI] [PubMed] [Google Scholar]
  16. Parsons P. A. Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev Camb Philos Soc. 1990 May;65(2):131–145. doi: 10.1111/j.1469-185x.1990.tb01186.x. [DOI] [PubMed] [Google Scholar]
  17. Pukazhenthi B. S., Wildt D. E., Ottinger M. A., Howard J. Compromised sperm protein phosphorylation after capacitation, swim-up, and zona pellucida exposure in teratospermic domestic cats. J Androl. 1996 Jul-Aug;17(4):409–419. [PubMed] [Google Scholar]
  18. Ralls K., Brugger K., Ballou J. Inbreeding and juvenile mortality in small populations of ungulates. Science. 1979 Nov 30;206(4422):1101–1103. doi: 10.1126/science.493997. [DOI] [PubMed] [Google Scholar]
  19. Roldan E. R., Murase T., Shi Q. X. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science. 1994 Dec 2;266(5190):1578–1581. doi: 10.1126/science.7985030. [DOI] [PubMed] [Google Scholar]
  20. Sofikitis N. V., Miyagawa I., Zavos P. M., Toda T., Iino A., Terakawa N. Confocal scanning laser microscopy of morphometric human sperm parameters: correlation with acrosin profiles and fertilizing capacity. Fertil Steril. 1994 Aug;62(2):376–386. doi: 10.1016/s0015-0282(16)56894-0. [DOI] [PubMed] [Google Scholar]
  21. Stockley P., Searle J. B., MacDonald D. W., Jones C. S. Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding. Proc Biol Sci. 1993 Dec 22;254(1341):173–179. doi: 10.1098/rspb.1993.0143. [DOI] [PubMed] [Google Scholar]
  22. Söderquist L., Janson L., Larsson K., Einarsson S. Sperm morphology and fertility in A.I. bulls. Zentralbl Veterinarmed A. 1991 Aug;38(7):534–543. doi: 10.1111/j.1439-0442.1991.tb01045.x. [DOI] [PubMed] [Google Scholar]
  23. Wildt D. E., Bush M., Howard J. G., O'Brien S. J., Meltzer D., Van Dyk A., Ebedes H., Brand D. J. Unique seminal quality in the South African cheetah and a comparative evaluation in the domestic cat. Biol Reprod. 1983 Nov;29(4):1019–1025. doi: 10.1095/biolreprod29.4.1019. [DOI] [PubMed] [Google Scholar]
  24. Wildt D. E., O'Brien S. J., Howard J. G., Caro T. M., Roelke M. E., Brown J. L., Bush M. Similarity in ejaculate-endocrine characteristics in captive versus free-ranging cheetahs of two subspecies. Biol Reprod. 1987 Mar;36(2):351–360. doi: 10.1095/biolreprod36.2.351. [DOI] [PubMed] [Google Scholar]
  25. Woolley D. M., Beatty R. A. Inheritance of midpiece length in mouse spermatozoa. Nature. 1967 Jul 1;215(5096):94–95. doi: 10.1038/215094a0. [DOI] [PubMed] [Google Scholar]
  26. Woolley D. M. Selection for the length of the spermatozoan midpiece in the mouse. Genet Res. 1970 Dec;16(3):261–275. doi: 10.1017/s0016672300002524. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES