Abstract
High-resolution records of the sodium gating current in the squid giant axon demonstrate the existence of a slowly rising phase that is first apparent at pulse potentials slightly below zero, and becomes increasingly pronounced at more positive potentials. At +80 mV the current reaches its peak with a delay of 30 microseconds at 10 degrees C. It is suggested that this current is generated by the first two steps labelled R-->P and P-->A in the S4 units of all four domains of the series-parallel gating system, activating the channel before its opening by the third steps A-->B in domains I, II and III in conjunction with hydration. The kinetics of the slowly rising phase can only be explained by the incorporation of an appropriate degree of voltage-dependent cooperativity between the S4 voltage-sensors for their two initial transitions.
Full Text
The Full Text of this article is available as a PDF (528.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong C. M., Gilly W. F. Fast and slow steps in the activation of sodium channels. J Gen Physiol. 1979 Dec;74(6):691–711. doi: 10.1085/jgp.74.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bekkers J. M., Greeff N. G., Keynes R. D. The conductance and density of sodium channels in the cut-open squid giant axon. J Physiol. 1986 Aug;377:463–486. doi: 10.1113/jphysiol.1986.sp016198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti F., Stühmer W. Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J. 1989;17(2):53–59. doi: 10.1007/BF00257102. [DOI] [PubMed] [Google Scholar]
- Forster I. C., Greeff N. G. High resolution recording of asymmetry currents from the squid giant axon: technical aspects of voltage clamp design. J Neurosci Methods. 1990 Aug;33(2-3):185–205. doi: 10.1016/0165-0270(90)90023-9. [DOI] [PubMed] [Google Scholar]
- Forster I. C., Greeff N. G. The early phase of sodium channel gating current in the squid giant axon. Characteristics of a fast component of displacement charge movement. Eur Biophys J. 1992;21(2):99–116. doi: 10.1007/BF00185425. [DOI] [PubMed] [Google Scholar]
- Hirschberg B., Rovner A., Lieberman M., Patlak J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J Gen Physiol. 1995 Dec;106(6):1053–1068. doi: 10.1085/jgp.106.6.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichikawa M., Urayama M., Matsumoto G. Anticalmodulin drugs block the sodium gating current of squid giant axons. J Membr Biol. 1991 Mar;120(3):211–222. doi: 10.1007/BF01868532. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Elinder F. Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc Biol Sci. 1998 Feb 22;265(1393):263–270. doi: 10.1098/rspb.1998.0291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keynes R. D., Greeff N. G., Forster I. C. Activation, inactivation and recovery in the sodium channels of the squid giant axon dialysed with different solutions. Philos Trans R Soc Lond B Biol Sci. 1992 Sep 29;337(1282):471–484. doi: 10.1098/rstb.1992.0122. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Greeff N. G., Forster I. C. Kinetic analysis of the sodium gating current in the squid giant axon. Proc R Soc Lond B Biol Sci. 1990 Jun 22;240(1299):411–423. doi: 10.1098/rspb.1990.0045. [DOI] [PubMed] [Google Scholar]
- Keynes R. D. The kinetics of voltage-gated ion channels. Q Rev Biophys. 1994 Dec;27(4):339–434. doi: 10.1017/s0033583500003097. [DOI] [PubMed] [Google Scholar]
- Kontis K. J., Rounaghi A., Goldin A. L. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol. 1997 Oct;110(4):391–401. doi: 10.1085/jgp.110.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meves H., Pohl J. A. A slow component in the gating current of the frog node of Ranvier. Pflugers Arch. 1990 Apr;416(1-2):162–169. doi: 10.1007/BF00370238. [DOI] [PubMed] [Google Scholar]
- Schoppa N. E., McCormack K., Tanouye M. A., Sigworth F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 1992 Mar 27;255(5052):1712–1715. doi: 10.1126/science.1553560. [DOI] [PubMed] [Google Scholar]
- Starkus J. G., Rayner M. D. Gating current "fractionation" in crayfish giant axons. Biophys J. 1991 Nov;60(5):1101–1119. doi: 10.1016/S0006-3495(91)82146-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefani E., Toro L., Perozo E., Bezanilla F. Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J. 1994 Apr;66(4):996–1010. doi: 10.1016/S0006-3495(94)80881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stimers J. R., Bezanilla F., Taylor R. E. Sodium channel gating currents. Origin of the rising phase. J Gen Physiol. 1987 Apr;89(4):521–540. doi: 10.1085/jgp.89.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R. E., Bezanilla F. Sodium and gating current time shifts resulting from changes in initial conditions. J Gen Physiol. 1983 Jun;81(6):773–784. doi: 10.1085/jgp.81.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
- Zagotta W. N., Hoshi T., Aldrich R. W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol. 1994 Feb;103(2):321–362. doi: 10.1085/jgp.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]