Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Feb 22;265(1393):255–262. doi: 10.1098/rspb.1998.0290

On the slowly rising phase of the sodium gating current in the squid giant axon.

R D Keynes 1, F Elinder 1
PMCID: PMC1688886  PMID: 9523427

Abstract

High-resolution records of the sodium gating current in the squid giant axon demonstrate the existence of a slowly rising phase that is first apparent at pulse potentials slightly below zero, and becomes increasingly pronounced at more positive potentials. At +80 mV the current reaches its peak with a delay of 30 microseconds at 10 degrees C. It is suggested that this current is generated by the first two steps labelled R-->P and P-->A in the S4 units of all four domains of the series-parallel gating system, activating the channel before its opening by the third steps A-->B in domains I, II and III in conjunction with hydration. The kinetics of the slowly rising phase can only be explained by the incorporation of an appropriate degree of voltage-dependent cooperativity between the S4 voltage-sensors for their two initial transitions.

Full Text

The Full Text of this article is available as a PDF (528.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Gilly W. F. Fast and slow steps in the activation of sodium channels. J Gen Physiol. 1979 Dec;74(6):691–711. doi: 10.1085/jgp.74.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bekkers J. M., Greeff N. G., Keynes R. D. The conductance and density of sodium channels in the cut-open squid giant axon. J Physiol. 1986 Aug;377:463–486. doi: 10.1113/jphysiol.1986.sp016198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conti F., Stühmer W. Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J. 1989;17(2):53–59. doi: 10.1007/BF00257102. [DOI] [PubMed] [Google Scholar]
  4. Forster I. C., Greeff N. G. High resolution recording of asymmetry currents from the squid giant axon: technical aspects of voltage clamp design. J Neurosci Methods. 1990 Aug;33(2-3):185–205. doi: 10.1016/0165-0270(90)90023-9. [DOI] [PubMed] [Google Scholar]
  5. Forster I. C., Greeff N. G. The early phase of sodium channel gating current in the squid giant axon. Characteristics of a fast component of displacement charge movement. Eur Biophys J. 1992;21(2):99–116. doi: 10.1007/BF00185425. [DOI] [PubMed] [Google Scholar]
  6. Hirschberg B., Rovner A., Lieberman M., Patlak J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J Gen Physiol. 1995 Dec;106(6):1053–1068. doi: 10.1085/jgp.106.6.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ichikawa M., Urayama M., Matsumoto G. Anticalmodulin drugs block the sodium gating current of squid giant axons. J Membr Biol. 1991 Mar;120(3):211–222. doi: 10.1007/BF01868532. [DOI] [PubMed] [Google Scholar]
  8. Keynes R. D., Elinder F. Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc Biol Sci. 1998 Feb 22;265(1393):263–270. doi: 10.1098/rspb.1998.0291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keynes R. D., Greeff N. G., Forster I. C. Activation, inactivation and recovery in the sodium channels of the squid giant axon dialysed with different solutions. Philos Trans R Soc Lond B Biol Sci. 1992 Sep 29;337(1282):471–484. doi: 10.1098/rstb.1992.0122. [DOI] [PubMed] [Google Scholar]
  10. Keynes R. D., Greeff N. G., Forster I. C. Kinetic analysis of the sodium gating current in the squid giant axon. Proc R Soc Lond B Biol Sci. 1990 Jun 22;240(1299):411–423. doi: 10.1098/rspb.1990.0045. [DOI] [PubMed] [Google Scholar]
  11. Keynes R. D. The kinetics of voltage-gated ion channels. Q Rev Biophys. 1994 Dec;27(4):339–434. doi: 10.1017/s0033583500003097. [DOI] [PubMed] [Google Scholar]
  12. Kontis K. J., Rounaghi A., Goldin A. L. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol. 1997 Oct;110(4):391–401. doi: 10.1085/jgp.110.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meves H., Pohl J. A. A slow component in the gating current of the frog node of Ranvier. Pflugers Arch. 1990 Apr;416(1-2):162–169. doi: 10.1007/BF00370238. [DOI] [PubMed] [Google Scholar]
  14. Schoppa N. E., McCormack K., Tanouye M. A., Sigworth F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 1992 Mar 27;255(5052):1712–1715. doi: 10.1126/science.1553560. [DOI] [PubMed] [Google Scholar]
  15. Starkus J. G., Rayner M. D. Gating current "fractionation" in crayfish giant axons. Biophys J. 1991 Nov;60(5):1101–1119. doi: 10.1016/S0006-3495(91)82146-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stefani E., Toro L., Perozo E., Bezanilla F. Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J. 1994 Apr;66(4):996–1010. doi: 10.1016/S0006-3495(94)80881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stimers J. R., Bezanilla F., Taylor R. E. Sodium channel gating currents. Origin of the rising phase. J Gen Physiol. 1987 Apr;89(4):521–540. doi: 10.1085/jgp.89.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor R. E., Bezanilla F. Sodium and gating current time shifts resulting from changes in initial conditions. J Gen Physiol. 1983 Jun;81(6):773–784. doi: 10.1085/jgp.81.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
  20. Zagotta W. N., Hoshi T., Aldrich R. W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol. 1994 Feb;103(2):321–362. doi: 10.1085/jgp.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES