Abstract
Inferences about mechanisms at one particular stage of a visual pathway may be made from psychophysical thresholds only if the noise at the stage in question dominates that in the others. Spectral sensitivities, measured under bright conditions, for di-, tri-, and tetrachromatic eyes from a range of animals can be modelled by assuming that thresholds are set by colour opponency mechanisms whose performance is limited by photoreceptor noise, the achromatic signal being disregarded. Noise in the opponency channels themselves is therefore not statistically independent, and it is not possible to infer anything more about the channels from psychophysical thresholds. As well as giving insight into mechanisms of vision, the model predicts the performance of colour vision in animals where physiological and anatomical data on the eye are available, but there are no direct measurements of perceptual thresholds. The model, therefore, is widely applicable to comparative studies of eye design and visual ecology.
Full Text
The Full Text of this article is available as a PDF (196.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aho A. C., Donner K., Reuter T. Retinal origins of the temperature effect on absolute visual sensitivity in frogs. J Physiol. 1993 Apr;463:501–521. doi: 10.1113/jphysiol.1993.sp019608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Backhaus W. Color opponent coding in the visual system of the honeybee. Vision Res. 1991;31(7-8):1381–1397. doi: 10.1016/0042-6989(91)90059-e. [DOI] [PubMed] [Google Scholar]
- Bowmaker J. K., Heath L. A., Wilkie S. E., Hunt D. M. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 1997 Aug;37(16):2183–2194. doi: 10.1016/s0042-6989(97)00026-6. [DOI] [PubMed] [Google Scholar]
- Boynton R. M., Ikeda M., Stiles W. S. Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds. Vision Res. 1964 May;4(1):87–117. doi: 10.1016/0042-6989(64)90035-5. [DOI] [PubMed] [Google Scholar]
- Brandt R., Vorobyev M. Metric analysis of threshold spectral sensitivity in the honeybee. Vision Res. 1997 Feb;37(4):425–439. doi: 10.1016/s0042-6989(96)00195-2. [DOI] [PubMed] [Google Scholar]
- Cole G. R., Hine T., McIlhagga W. Detection mechanisms in L-, M-, and S-cone contrast space. J Opt Soc Am A. 1993 Jan;10(1):38–51. doi: 10.1364/josaa.10.000038. [DOI] [PubMed] [Google Scholar]
- Emmerton J., Schwemer J., Muth I., Schlecht P. Spectral transmission of the ocular media of the pegion (Columba livia). Invest Ophthalmol Vis Sci. 1980 Nov;19(11):1382–1387. [PubMed] [Google Scholar]
- Foster D. H., Snelgar R. S. Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes? Vision Res. 1983;23(8):787–797. doi: 10.1016/0042-6989(83)90201-8. [DOI] [PubMed] [Google Scholar]
- Guth S. L., Massof R. W., Benzschawel T. Vector model for normal and dichromatic color vision. J Opt Soc Am. 1980 Feb;70(2):197–212. doi: 10.1364/josa.70.000197. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. Duplicity theory and ground squirrels: linkages between photoreceptors and visual function. Vis Neurosci. 1990 Sep;5(3):311–318. doi: 10.1017/s0952523800000377. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Neitz J. Spectral mechanisms and color vision in the tree shrew (Tupaia belangeri). Vision Res. 1986;26(2):291–298. doi: 10.1016/0042-6989(86)90026-x. [DOI] [PubMed] [Google Scholar]
- King-Smith P. E., Carden D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J Opt Soc Am. 1976 Jul;66(7):709–717. doi: 10.1364/josa.66.000709. [DOI] [PubMed] [Google Scholar]
- Lee B. B., Martin P. R., Valberg A. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. J Physiol. 1989 Jul;414:223–243. doi: 10.1113/jphysiol.1989.sp017685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maier E. J. Ultraviolet vision in a passeriform bird: from receptor spectral sensitivity to overall spectral sensitivity in Leiothrix lutea. Vision Res. 1994 Jun;34(11):1415–1418. doi: 10.1016/0042-6989(94)90141-4. [DOI] [PubMed] [Google Scholar]
- Massof R. W. A quantum fluctuation model for foveal color thresholds. Vision Res. 1977;17(4):565–570. doi: 10.1016/0042-6989(77)90055-4. [DOI] [PubMed] [Google Scholar]
- Miyahara E., Pokorny J., Smith V. C. Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers. Vision Res. 1996 Jun;36(11):1597–1613. doi: 10.1016/0042-6989(95)00215-4. [DOI] [PubMed] [Google Scholar]
- Neumeyer C., Wietsma J. J., Spekreijse H. Separate processing of "color" and "brightness" in goldfish. Vision Res. 1991;31(3):537–549. doi: 10.1016/0042-6989(91)90104-d. [DOI] [PubMed] [Google Scholar]
- Osorio D., Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci. 1996 May 22;263(1370):593–599. doi: 10.1098/rspb.1996.0089. [DOI] [PubMed] [Google Scholar]
- Petry H. M., Hárosi F. I. Visual pigments of the tree shrew (Tupaia belangeri) and greater galago (Galago crassicaudatus): a microspectrophotometric investigation. Vision Res. 1990;30(6):839–851. doi: 10.1016/0042-6989(90)90053-n. [DOI] [PubMed] [Google Scholar]
- Poirson A. B., Wandell B. A. The ellipsoidal representation of spectral sensitivity. Vision Res. 1990;30(4):647–652. doi: 10.1016/0042-6989(90)90075-v. [DOI] [PubMed] [Google Scholar]
- RUDDOCK K. H. EVIDENCE FOR MACULAR PIGMENTATION FROM COLOUR MATCHING DATA. Vision Res. 1963 Dec;61:417–429. doi: 10.1016/0042-6989(63)90093-2. [DOI] [PubMed] [Google Scholar]
- Remy M., Emmerton J. Behavioral spectral sensitivities of different retinal areas in pigeons. Behav Neurosci. 1989 Feb;103(1):170–177. doi: 10.1037//0735-7044.103.1.170. [DOI] [PubMed] [Google Scholar]
- Smith V. C., Pokorny J. Spectral sensitivity of color-blind observers and the cone photopigments. Vision Res. 1972 Dec;12(12):2059–2071. doi: 10.1016/0042-6989(72)90058-2. [DOI] [PubMed] [Google Scholar]
- Sperling H. G., Harwerth R. S. Red-green cone interactions in the increment-threshold spectral sensitivity of primates. Science. 1971 Apr 9;172(3979):180–184. doi: 10.1126/science.172.3979.180. [DOI] [PubMed] [Google Scholar]
- Thornton J. E., Pugh E. N., Jr Red/Green color opponency at detection threshold. Science. 1983 Jan 14;219(4581):191–193. doi: 10.1126/science.6849131. [DOI] [PubMed] [Google Scholar]
- Trabka E. A. On Stiles' line element in brightness-color space and the color power of the blue. Vision Res. 1968 Feb;8(2):113–134. doi: 10.1016/0042-6989(68)90001-1. [DOI] [PubMed] [Google Scholar]
- Vos Hzn J. J., Coemans M. A., Nuboer J. F. The photopic sensitivity of the yellow field of the pigeon's retina to ultraviolet light. Vision Res. 1994 Jun;34(11):1419–1425. doi: 10.1016/0042-6989(94)90142-2. [DOI] [PubMed] [Google Scholar]
- Vos J. J., Walraven P. L. An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts. Vision Res. 1972 Aug;12(8):1327–1344. doi: 10.1016/0042-6989(72)90181-2. [DOI] [PubMed] [Google Scholar]
- Walraven P. L. A closer look at the tritanopic convergence point. Vision Res. 1974 Dec;14(12):1339–1343. doi: 10.1016/0042-6989(74)90007-8. [DOI] [PubMed] [Google Scholar]
- Webster M. A., Mollon J. D. Changes in colour appearance following post-receptoral adaptation. Nature. 1991 Jan 17;349(6306):235–238. doi: 10.1038/349235a0. [DOI] [PubMed] [Google Scholar]
- Yeh T., Pokorny J., Smith V. C. Chromatic discrimination with variation in chromaticity and luminance: data and theory. Vision Res. 1993 Sep;33(13):1835–1845. doi: 10.1016/0042-6989(93)90174-u. [DOI] [PubMed] [Google Scholar]
