Abstract
In Syrian hamsters, exposure to short photoperiods or constant darkness induces a decrease in gonadotrophin secretion and gonadal regression. After 10-12 weeks, animals undergo spontaneous gonadal reactivation, gonadotrophin concentrations rise, and in males, testes size increases and spermatogenesis resumes. The tau mutation shortens the period of circadian wheel-running activity by 4 h in the homozygote. Here, we examine the impact of this mutation on the reproductive response to photoperiod change. Seventeen adult tau mutant and nine adult wild-type males were housed in complete darkness for 25 weeks and testes size determined at weekly intervals. Gonadal regression and subsequent recrudescence occurred in both groups of animals. Regression occurred more rapidly in tau mutants, with a nadir significantly earlier than wild-types but after a similar number of circadian cycles. Rates of testicular recrudescence were similar in both groups. Our data suggest that an acceleration of the circadian period increases the rate of reproductive inhibition in animals exposed to inhibitory photoperiods. Once initiated, the rate of spontaneous reactivation may be independent of the circadian axis.
Full Text
The Full Text of this article is available as a PDF (135.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartness T. J., Powers J. B., Hastings M. H., Bittman E. L., Goldman B. D. The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? J Pineal Res. 1993 Nov;15(4):161–190. doi: 10.1111/j.1600-079x.1993.tb00903.x. [DOI] [PubMed] [Google Scholar]
- Berndtson W. E., Desjardins C. Circulating LH and FSH levels and testicular function in hamsters during light deprivation and subsequent photoperiodic stimulation. Endocrinology. 1974 Jul;95(1):195–205. doi: 10.1210/endo-95-1-195. [DOI] [PubMed] [Google Scholar]
- Elliott J. A. Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc. 1976 Oct;35(12):2339–2346. [PubMed] [Google Scholar]
- Gaston S., Menaker M. Photoperiodic control of hamster testis. Science. 1967 Nov 17;158(3803):925–928. doi: 10.1126/science.158.3803.925. [DOI] [PubMed] [Google Scholar]
- Hastings M. H., Walker A. P., Powers J. B., Hutchison J., Steel E. A., Herbert J. Differential effects of photoperiodic history on the responses of gonadotrophins and prolactin to intermediate daylengths in the male Syrian hamster. J Biol Rhythms. 1989 Fall;4(3):335–350. doi: 10.1177/074873048900400303. [DOI] [PubMed] [Google Scholar]
- Karsch F. J., Bittman E. L., Robinson J. E., Yellon S. M., Wayne N. L., Olster D. H., Kaynard A. H. Melatonin and photorefractoriness: loss of response to the melatonin signal leads to seasonal reproductive transitions in the ewe. Biol Reprod. 1986 Mar;34(2):265–274. doi: 10.1095/biolreprod34.2.265. [DOI] [PubMed] [Google Scholar]
- Loudon A. S., Wayne N. L., Krieg R., Iranmanesh A., Veldhuis J. D., Menaker M. Ultradian endocrine rhythms are altered by a circadian mutation in the Syrian hamster. Endocrinology. 1994 Aug;135(2):712–718. doi: 10.1210/endo.135.2.8033819. [DOI] [PubMed] [Google Scholar]
- Maywood E. S., Buttery R. C., Vance G. H., Herbert J., Hastings M. H. Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase nor to lesions of the suprachiasmatic nuclei. Biol Reprod. 1990 Aug;43(2):174–182. doi: 10.1095/biolreprod43.2.174. [DOI] [PubMed] [Google Scholar]
- Maywood E. S., Hastings M. H., Max M., Ampleford E., Menaker M., Loudon A. S. Circadian and daily rhythms of melatonin in the blood and pineal gland of free-running and entrained Syrian hamsters. J Endocrinol. 1993 Jan;136(1):65–73. doi: 10.1677/joe.0.1360065. [DOI] [PubMed] [Google Scholar]
- Powers J. B., Jetton A. E., Mangels R. A., Bittman E. L. Effects of photoperiod duration and melatonin signal characteristics on the reproductive system of male Syrian hamsters. J Neuroendocrinol. 1997 Jun;9(6):451–466. doi: 10.1046/j.1365-2826.1997.t01-1-00602.x. [DOI] [PubMed] [Google Scholar]
- Reiter R. J. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev. 1980 Spring;1(2):109–131. doi: 10.1210/edrv-1-2-109. [DOI] [PubMed] [Google Scholar]
- Steger R. W., Bartke A., Goldman B. D. Alterations in neuroendocrine function during photoperiod induced testicular atrophy and recrudescence in the golden hamster. Biol Reprod. 1982 Apr;26(3):437–444. doi: 10.1095/biolreprod26.3.437. [DOI] [PubMed] [Google Scholar]
- Stetson M. H., Tate-Ostroff B. Hormonal regulation of the annual reproductive cycle of golden hamsters. Gen Comp Endocrinol. 1981 Nov;45(3):329–344. doi: 10.1016/0016-6480(81)90073-3. [DOI] [PubMed] [Google Scholar]
- Stetson M. H., Watson-Whitmyre M., Matt K. S. Termination of photorefractoriness in golden hamsters-photoperiodic requirements. J Exp Zool. 1977 Oct;202(1):81–88. doi: 10.1002/jez.1402020110. [DOI] [PubMed] [Google Scholar]
- Stirland J. A., Grosse J., Loudon A. S., Hastings M. H., Maywood E. S. Gonadal responses of the male tau mutant Syrian hamster to short-day-like programmed infusions of melatonin. Biol Reprod. 1995 Aug;53(2):361–367. doi: 10.1095/biolreprod53.2.361. [DOI] [PubMed] [Google Scholar]
- Stirland J. A., Hastings M. H., Loudon A. S., Maywood E. S. The tau mutation in the Syrian hamster alters the photoperiodic responsiveness of the gonadal axis to melatonin signal frequency. Endocrinology. 1996 May;137(5):2183–2186. doi: 10.1210/endo.137.5.8612567. [DOI] [PubMed] [Google Scholar]
- Stirland J. A., Mohammad Y. N., Loudon A. S. A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductive response to photoperiod change. Proc Biol Sci. 1996 Mar 22;263(1368):345–350. doi: 10.1098/rspb.1996.0053. [DOI] [PubMed] [Google Scholar]
- Turek F. W., Elliott J. A., Alvis J. D., Menaker M. Effect of prolonged exposure to nonstimulatory photoperiods on the activity of the neuroendocrine-testicular axis of golden hamsters. Biol Reprod. 1975 Nov;13(4):475–481. doi: 10.1095/biolreprod13.4.475. [DOI] [PubMed] [Google Scholar]
- Turek F. W., Elliott J. A., Alvis J. D., Menaker M. The interaction of castration and photoperiod in the regulation of hypophyseal and serum gonadotropin levels in male golden hamsters. Endocrinology. 1975 Apr;96(4):854–860. doi: 10.1210/endo-96-4-854. [DOI] [PubMed] [Google Scholar]
- Vitaterna M. H., Turek F. W. Photoperiodic responses differ among inbred strains of golden hamsters (Mesocricetus auratus). Biol Reprod. 1993 Sep;49(3):496–501. doi: 10.1095/biolreprod49.3.496. [DOI] [PubMed] [Google Scholar]