Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Mar 22;265(1395):465–473. doi: 10.1098/rspb.1998.0318

Characterization and function of carbonic anhydrases in the zooxanthellae-giant clam symbiosis.

B K Baillie 1, D Yellowlees 1
PMCID: PMC1688913  PMID: 9569665

Abstract

Carbonic anhydrase (CA) has been purified from the host tissue of Tridacna gigas, a clam that lives in symbiosis with the dinoflagellate alga, Symbiodinium. At least two isoforms of CA were identified in both gill and mantle tissue. The larger (70 kDa) isoform is a glycoprotein with both N- and O-glycans attached and has highest homology to CAII. It is associated with the membrane fraction while the smaller (32 kDa) is present in the aqueous phase in both tissues. The 32 kDa CA has high homology with mammalian CAI at the N-terminus. Both isoforms cross-reacted with antibodies to CAII from chicken. Immunohistology demonstrated that the 70 kDa CA is present within the ciliated branchial filaments and cells lining the tertiary water channels in the gills of T. gigas. This is consistent with a role in the transport of inorganic carbon (Ci) to the haemolymph and therefore supply of Ci to the zooxanthellae. CA was also detected in mantle epithelial cells where it may also contribute to Ci supply to the zooxanthellae. The hyaline body and nerve tissue in the mantle express the 70 kDa CA where it may be involved in light sensing and nervous transmission.

Full Text

The Full Text of this article is available as a PDF (312.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Burnett L. E., McMahon B. R. Facilitation of CO2 excretion by carbonic anhydrase located on the surface of the basal membrane of crab gill epithelium. Respir Physiol. 1985 Dec;62(3):341–348. doi: 10.1016/0034-5687(85)90089-1. [DOI] [PubMed] [Google Scholar]
  4. Chirică L. C., Elleby B., Jonsson B. H., Lindskog S. The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem. 1997 Mar 15;244(3):755–760. doi: 10.1111/j.1432-1033.1997.00755.x. [DOI] [PubMed] [Google Scholar]
  5. Clegg J. C. Glycoprotein detection in nitrocellulose transfers of electrophoretically separated protein mixtures using concanavalin A and peroxidase: application to arenavirus and flavivirus proteins. Anal Biochem. 1982 Dec;127(2):389–394. doi: 10.1016/0003-2697(82)90192-0. [DOI] [PubMed] [Google Scholar]
  6. Edge A. S., Faltynek C. R., Hof L., Reichert L. E., Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
  7. Fraser P. J., Curtis P. J. Molecular evolution of the carbonic anhydrase genes: calculation of divergence time for mouse carbonic anhydrase I and II. J Mol Evol. 1986;23(4):294–299. doi: 10.1007/BF02100637. [DOI] [PubMed] [Google Scholar]
  8. Goffredi S, Childress J, Desaulniers N, Lee R, Lallier F, Hammond D. Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent ion transport by the worm. J Exp Biol. 1997;200(Pt 5):883–896. doi: 10.1242/jeb.200.5.883. [DOI] [PubMed] [Google Scholar]
  9. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Sairam M. R., Schiller P. W. Receptor binding, biological, and immunological properties of chemically deglycosylated pituitary lutropin. Arch Biochem Biophys. 1979 Oct 1;197(1):294–301. doi: 10.1016/0003-9861(79)90248-0. [DOI] [PubMed] [Google Scholar]
  12. Soltes-Rak E., Mulligan M. E., Coleman J. R. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol. 1997 Feb;179(3):769–774. doi: 10.1128/jb.179.3.769-774.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sánchez-Ferrer A., Bru R., García-Carmona F. Phase separation of biomolecules in polyoxyethylene glycol nonionic detergents. Crit Rev Biochem Mol Biol. 1994;29(4):275–313. doi: 10.3109/10409239409083483. [DOI] [PubMed] [Google Scholar]
  14. Yoshihara C. M., Lee J. D., Dodgson J. B. The chicken carbonic anhydrase II gene: evidence for a recent shift in intron position. Nucleic Acids Res. 1987 Jan 26;15(2):753–770. doi: 10.1093/nar/15.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES