Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Apr 22;265(1397):685–692. doi: 10.1098/rspb.1998.0348

Identification of Ca(2+)-activated K+ channel splice variants and their distribution in the turtle cochlea.

E M Jones 1, C Laus 1, R Fettiplace 1
PMCID: PMC1689023  PMID: 9608728

Abstract

Turtle auditory-hair cells are frequency-tuned by the activity of calcium-activated potassium (KCa) channels, a cell's characteristic frequency being determined by the KCa channel density and kinetics which both vary systematically along the cochlea. As a first step towards identifying the source of KCa channel variation, we have isolated, by reverse-transcription polymerase chain reaction on dissociated hair cells, the main cDNAs homologous to the slo gene which encodes the channel's alpha-subunit. A total of six alternatively spliced variants were identified, the smallest of which is 94% identical to a mouse Slo sequence. Variation occurs by insertion of exons at only two splice sites, two of these exons encoding novel 31- and 61-amino acid sequences. As we were unable to detect splicing at other potential sites, we infer that the six variants correspond to naturally occurring combinations. The spatial distribution of the variants, defined by isolating hair cells from different regions of the cochlea, indicated that some isoforms were non-uniformly distributed. Those containing large inserts in the first splice site were notably absent from the highest-frequency region. We suggest that alternative splicing of the slo gene may contribute to variation in KCa channel properties.

Full Text

The Full Text of this article is available as a PDF (284.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman J. P., Shen K. Z., Kavanaugh M. P., Warren R. A., Wu Y. N., Lagrutta A., Bond C. T., North R. A. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron. 1992 Aug;9(2):209–216. doi: 10.1016/0896-6273(92)90160-f. [DOI] [PubMed] [Google Scholar]
  2. Art J. J., Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol. 1987 Apr;385:207–242. doi: 10.1113/jphysiol.1987.sp016492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Art J. J., Wu Y. C., Fettiplace R. The calcium-activated potassium channels of turtle hair cells. J Gen Physiol. 1995 Jan;105(1):49–72. doi: 10.1085/jgp.105.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Atkinson N. S., Robertson G. A., Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991 Aug 2;253(5019):551–555. doi: 10.1126/science.1857984. [DOI] [PubMed] [Google Scholar]
  5. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  6. Butler A., Tsunoda S., McCobb D. P., Wei A., Salkoff L. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science. 1993 Jul 9;261(5118):221–224. doi: 10.1126/science.7687074. [DOI] [PubMed] [Google Scholar]
  7. Crawford A. C., Fettiplace R. An electrical tuning mechanism in turtle cochlear hair cells. J Physiol. 1981 Mar;312:377–412. doi: 10.1113/jphysiol.1981.sp013634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crawford A. C., Fettiplace R. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol. 1980 Sep;306:79–125. doi: 10.1113/jphysiol.1980.sp013387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuchs P. A., Nagai T., Evans M. G. Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci. 1988 Jul;8(7):2460–2467. doi: 10.1523/JNEUROSCI.08-07-02460.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hudspeth A. J., Lewis R. S. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol. 1988 Jun;400:237–274. doi: 10.1113/jphysiol.1988.sp017119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jiang G. J., Zidanic M., Michaels R. L., Michael T. H., Griguer C., Fuchs P. A. CSlo encodes calcium-activated potassium channels in the chick's cochlea. Proc Biol Sci. 1997 May 22;264(1382):731–737. doi: 10.1098/rspb.1997.0104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Navaratnam D. S., Bell T. J., Tu T. D., Cohen E. L., Oberholtzer J. C. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron. 1997 Nov;19(5):1077–1085. doi: 10.1016/s0896-6273(00)80398-0. [DOI] [PubMed] [Google Scholar]
  13. Pallanck L., Ganetzky B. Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum Mol Genet. 1994 Aug;3(8):1239–1243. doi: 10.1093/hmg/3.8.1239. [DOI] [PubMed] [Google Scholar]
  14. Rosenblatt K. P., Sun Z. P., Heller S., Hudspeth A. J. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea. Neuron. 1997 Nov;19(5):1061–1075. doi: 10.1016/s0896-6273(00)80397-9. [DOI] [PubMed] [Google Scholar]
  15. Saito M., Nelson C., Salkoff L., Lingle C. J. A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem. 1997 May 2;272(18):11710–11717. doi: 10.1074/jbc.272.18.11710. [DOI] [PubMed] [Google Scholar]
  16. Subramony P., Raucher S., Dryer L., Dryer S. E. Posttranslational regulation of Ca(2+)-activated K+ currents by a target-derived factor in developing parasympathetic neurons. Neuron. 1996 Jul;17(1):115–124. doi: 10.1016/s0896-6273(00)80285-8. [DOI] [PubMed] [Google Scholar]
  17. Tseng-Crank J., Foster C. D., Krause J. D., Mertz R., Godinot N., DiChiara T. J., Reinhart P. H. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron. 1994 Dec;13(6):1315–1330. doi: 10.1016/0896-6273(94)90418-9. [DOI] [PubMed] [Google Scholar]
  18. Wu Y. C., Art J. J., Goodman M. B., Fettiplace R. A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Mol Biol. 1995;63(2):131–158. doi: 10.1016/0079-6107(95)00002-5. [DOI] [PubMed] [Google Scholar]
  19. Wu Y. C., Fettiplace R. A developmental model for generating frequency maps in the reptilian and avian cochleas. Biophys J. 1996 Jun;70(6):2557–2570. doi: 10.1016/S0006-3495(96)79827-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES