Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Apr 22;265(1397):703–709. doi: 10.1098/rspb.1998.0350

The population genetic structure of the facultatively sexual parasitic nematode Strongyloides ratti in wild rats.

M C Fisher 1, M E Viney 1
PMCID: PMC1689034  PMID: 9608730

Abstract

We have investigated the population genetic structure of the parasitic nematode Strongyloides ratti in wild rats. In the UK, S. ratti reproduces predominantly by mitotic parthenogenesis, with sexual forms present at a rate of less than 1%. S. ratti was found to be a prevalent parasite and substantial genetic diversity was detected. Most rats were infected with a genotypic mixture of parasites. A hierarchical analysis of the genetic variation found in S. ratti sampled across Britain and Germany showed that 73.3% was explained by variation between parasites within individual hosts and 25.3% by variation between rats within sample sites. Only a small proportion (1.4%) of the total genetic variation was attributable to genetic subdivision between sample sites, suggesting that there is substantial gene flow between these sites. Most parasites sampled were found to exist in Hardy-Weinberg equilibrium and this population genetic structure is discussed in view of the virtual absence of sexual reproduction.

Full Text

The Full Text of this article is available as a PDF (190.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson T. J., Romero-Abal M. E., Jaenike J. Mitochondrial DNA and Ascaris microepidemiology: the composition of parasite populations from individual hosts, families and villages. Parasitology. 1995 Feb;110(Pt 2):221–229. doi: 10.1017/s003118200006399x. [DOI] [PubMed] [Google Scholar]
  2. Blouin M. S., Yowell C. A., Courtney C. H., Dame J. B. Host movement and the genetic structure of populations of parasitic nematodes. Genetics. 1995 Nov;141(3):1007–1014. doi: 10.1093/genetics/141.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Callen D. F., Thompson A. D., Shen Y., Phillips H. A., Richards R. I., Mulley J. C., Sutherland G. R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993 May;52(5):922–927. [PMC free article] [PubMed] [Google Scholar]
  4. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hebert P. D. Enzyme variability in natural populations of Daphnia magna. 3. Genotypic frequencies in intermittent populations. Genetics. 1974 Jun;77(2):335–341. doi: 10.1093/genetics/77.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hebert P. D. Enzyme variability in natural populations of Daphnia magna. II. Genotypic frequencies in permanent populations. Genetics. 1974 Jun;77(2):323–334. doi: 10.1093/genetics/77.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nadler S. A., Lindquist R. L., Near T. J. Genetic structure of midwestern Ascaris suum populations: a comparison of isoenzyme and RAPD markers. J Parasitol. 1995 Jun;81(3):385–394. [PubMed] [Google Scholar]
  8. Pemberton J. M., Slate J., Bancroft D. R., Barrett J. A. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol. 1995 Apr;4(2):249–252. doi: 10.1111/j.1365-294x.1995.tb00214.x. [DOI] [PubMed] [Google Scholar]
  9. Saul A. Computer model of the maintenance and selection of genetic heterogeneity in polygamous helminths. Parasitology. 1995 Nov;111(Pt 4):531–536. doi: 10.1017/s003118200006604x. [DOI] [PubMed] [Google Scholar]
  10. Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987 May 15;236(4803):787–792. doi: 10.1126/science.3576198. [DOI] [PubMed] [Google Scholar]
  11. Viney M. E. A genetic analysis of reproduction in Strongyloides ratti. Parasitology. 1994 Nov;109(Pt 4):511–515. doi: 10.1017/s0031182000080768. [DOI] [PubMed] [Google Scholar]
  12. Viney M. E. Developmental switching in the parasitic nematode Strongyloides ratti. Proc Biol Sci. 1996 Feb 22;263(1367):201–208. doi: 10.1098/rspb.1996.0032. [DOI] [PubMed] [Google Scholar]
  13. Viney M. E., Matthews B. E., Walliker D. Mating in the nematode parasite Strongyloides ratti: proof of genetic exchange. Proc Biol Sci. 1993 Dec 22;254(1341):213–219. doi: 10.1098/rspb.1993.0148. [DOI] [PubMed] [Google Scholar]
  14. Viney M. E., Matthews B. E., Walliker D. On the biological and biochemical nature of cloned populations of Strongyloides ratti. J Helminthol. 1992 Mar;66(1):45–52. doi: 10.1017/s0022149x00012554. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES