Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 May 7;265(1398):793–801. doi: 10.1098/rspb.1998.0362

New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene.

E Randi 1, N Mucci 1, M Pierpaoli 1, E Douzery 1
PMCID: PMC1689037  PMID: 9628037

Abstract

The entire mitochondrial cytochrome b (cyt b) gene was compared for 11 species of the artiodactyl family Cervidae, representing all living subfamilies, i.e., the antlered Cervinae (Cervus elaphus, C. nippon, Dama dama), Muntiacinae (Muntiacus reevesi), and Odocoileinae (Odocoileus hemionus, Mazama sp., Capreolus capreolus, C. pygargus, Rangifer tarandus, Alces alces); and the antlerless Hydropotinae (Hydropotes inermis). Phylogenetic analyses using Tragulidae, Antilocapridae, Giraffidae and Bovidae as outgroups provide evidence for three multifurcating principal clades within the monophyletic family Cervidae. First, Cervinae and Muntiacus are joined in a moderately-to-strongly supported clade of Eurasian species. Second, Old World Odocoileinae (Capreolus and Hydropotes) associate with the Holarctic Alces. Third, New World Odocoileinae (Mazama and Odocoileus) cluster with the Holarctic Rangifer. The combination of mitochondrial cyt b and nuclear k-casein sequences increases the robustness of these three clades. The Odocoileini + Rangiferini clade is unambiguously supported by a unique derived cranial feature, the expansion of the vomer which divides the choana. Contrasting with current taxonomy, Hydropotes is not the sister group of all the antlered deers, but it is nested within the Odocoileinae. Therefore, Hydropotes lost the antlers secondarily. Thus, the mitochondrial cyt b phylogeny splits Cervidae according to plesiometacarpal (Cervinae + Muntiacinae) versus telemetacarpal (Odocoileinae + Hydropotinae) conditions, and suggests paraphyly of antlered deer.

Full Text

The Full Text of this article is available as a PDF (198.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arctander P. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proc Biol Sci. 1995 Oct 23;262(1363):13–19. doi: 10.1098/rspb.1995.0170. [DOI] [PubMed] [Google Scholar]
  2. Beintema J. J., Schüller C., Irie M., Carsana A. Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol. 1988;51(3):165–192. doi: 10.1016/0079-6107(88)90001-6. [DOI] [PubMed] [Google Scholar]
  3. Bradley R. D., Hillis D. M. Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol. 1997 May;14(5):592–593. doi: 10.1093/oxfordjournals.molbev.a025797. [DOI] [PubMed] [Google Scholar]
  4. Chikuni K., Mori Y., Tabata T., Saito M., Monma M., Kosugiyama M. Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J Mol Evol. 1995 Dec;41(6):859–866. doi: 10.1007/BF00173165. [DOI] [PubMed] [Google Scholar]
  5. Cronin M. A., Stuart R., Pierson B. J., Patton J. C. K-casein gene phylogeny of higher ruminants (Pecora, Artiodactyla). Mol Phylogenet Evol. 1996 Oct;6(2):295–311. doi: 10.1006/mpev.1996.0078. [DOI] [PubMed] [Google Scholar]
  6. Douzery E., Randi E. The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol. 1997 Nov;14(11):1154–1166. doi: 10.1093/oxfordjournals.molbev.a025725. [DOI] [PubMed] [Google Scholar]
  7. Groves P., Shields G. F. Phylogenetics of the Caprinae based on cytochrome b sequence. Mol Phylogenet Evol. 1996 Jun;5(3):467–476. doi: 10.1006/mpev.1996.0043. [DOI] [PubMed] [Google Scholar]
  8. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
  9. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  10. Lee C., Court D. R., Cho C., Haslett J. L., Lin C. C. Higher-order organization of subrepeats and the evolution of cervid satellite I DNA. J Mol Evol. 1997 Mar;44(3):327–335. doi: 10.1007/pl00006150. [DOI] [PubMed] [Google Scholar]
  11. Miyamoto M. M., Kraus F., Ryder O. A. Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6127–6131. doi: 10.1073/pnas.87.16.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
  13. Philippe H. MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res. 1993 Nov 11;21(22):5264–5272. doi: 10.1093/nar/21.22.5264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rzhetsky A., Nei M. Tests of applicability of several substitution models for DNA sequence data. Mol Biol Evol. 1995 Jan;12(1):131–151. doi: 10.1093/oxfordjournals.molbev.a040182. [DOI] [PubMed] [Google Scholar]
  15. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Springer M. S., Douzery E. Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J Mol Evol. 1996 Oct;43(4):357–373. doi: 10.1007/BF02339010. [DOI] [PubMed] [Google Scholar]
  18. Stanley H. F., Kadwell M., Wheeler J. C. Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc Biol Sci. 1994 Apr 22;256(1345):1–6. doi: 10.1098/rspb.1994.0041. [DOI] [PubMed] [Google Scholar]
  19. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  20. Tanaka K., Solis C. D., Masangkay J. S., Maeda K., Kawamoto Y., Namikawa T. Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem Genet. 1996 Dec;34(11-12):443–452. doi: 10.1007/BF00570125. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES