Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 May 7;265(1398):753–762. doi: 10.1098/rspb.1998.0357

Patterns of density dependence in measles dynamics.

B Finkenstädt 1, M Keeling 1, B Grenfell 1
PMCID: PMC1689038  PMID: 9628034

Abstract

An important question in metapopulation dynamics is the influence of external perturbations on the population's long-term dynamic behaviour. In this paper we address the question of how spatiotemporal variations in demographic parameters affect the dynamics of measles populations in England and Wales. Specifically, we use nonparametric statistical methods to analyse how birth rate and population size modulate the negative density dependence between successive epidemics as well as their periodicity. For the observed spatiotemporal data from 60 cities, and for simulated model data, the demographic variables act as bifurcation parameters on the joint density of the trade-off between successive epidemics. For increasing population size, a transition occurs from an irregular unpredictable pattern in small communities towards a regular, predictable endemic pattern in large places. Variations in the birth rate parameter lead to a bifurcation from annual towards biennial cyclicity in both observed data and model data.

Full Text

The Full Text of this article is available as a PDF (266.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aron J. L. Multiple attractors in the response to a vaccination program. Theor Popul Biol. 1990 Aug;38(1):58–67. doi: 10.1016/0040-5809(90)90003-e. [DOI] [PubMed] [Google Scholar]
  2. Bjørnstad O. N., Falck W., Stenseth N. C. A geographic gradient in small rodent density fluctuations: a statistical modelling approach. Proc Biol Sci. 1995 Nov 22;262(1364):127–133. doi: 10.1098/rspb.1995.0186. [DOI] [PubMed] [Google Scholar]
  3. Bolker B., Grenfell B. Space, persistence and dynamics of measles epidemics. Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):309–320. doi: 10.1098/rstb.1995.0070. [DOI] [PubMed] [Google Scholar]
  4. Clarkson J. A., Fine P. E. The efficiency of measles and pertussis notification in England and Wales. Int J Epidemiol. 1985 Mar;14(1):153–168. doi: 10.1093/ije/14.1.153. [DOI] [PubMed] [Google Scholar]
  5. Costantino RF, Desharnais RA, Cushing JM, Dennis B. Chaotic Dynamics in an Insect Population. Science. 1997 Jan 17;275(5298):389–391. doi: 10.1126/science.275.5298.389. [DOI] [PubMed] [Google Scholar]
  6. Ferguson N. M., Nokes D. J., Anderson R. M. Dynamical complexity in age-structured models of the transmission of the measles virus: epidemiological implications at high levels of vaccine uptake. Math Biosci. 1996 Dec;138(2):101–130. doi: 10.1016/s0025-5564(96)00127-7. [DOI] [PubMed] [Google Scholar]
  7. Finkenstädt B., Grenfell B. Empirical determinants of measles metapopulation dynamics in England and Wales. Proc Biol Sci. 1998 Feb 7;265(1392):211–220. doi: 10.1098/rspb.1998.0284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keeling M. J., Grenfell B. T. Disease extinction and community size: modeling the persistence of measles. Science. 1997 Jan 3;275(5296):65–67. doi: 10.1126/science.275.5296.65. [DOI] [PubMed] [Google Scholar]
  9. McLean A. R., Anderson R. M. Measles in developing countries. Part I. Epidemiological parameters and patterns. Epidemiol Infect. 1988 Feb;100(1):111–133. doi: 10.1017/s0950268800065614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McLean A. R., Anderson R. M. Measles in developing countries. Part II. The predicted impact of mass vaccination. Epidemiol Infect. 1988 Jun;100(3):419–442. doi: 10.1017/s0950268800067170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olsen L. F., Truty G. L., Schaffer W. M. Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor Popul Biol. 1988 Jun;33(3):344–370. doi: 10.1016/0040-5809(88)90019-6. [DOI] [PubMed] [Google Scholar]
  12. doi: 10.1098/rspb.1997.0005. [DOI] [PMC free article] [Google Scholar]
  13. Rand D. A., Wilson H. B. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc Biol Sci. 1991 Nov 22;246(1316):179–184. doi: 10.1098/rspb.1991.0142. [DOI] [PubMed] [Google Scholar]
  14. Rhodes C. J., Jensen H. J., Anderson R. M. On the critical behaviour of simple epidemics. Proc Biol Sci. 1997 Nov 22;264(1388):1639–1646. doi: 10.1098/rspb.1997.0228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schaffer W. M., Kot M. Nearly one dimensional dynamics in an epidemic. J Theor Biol. 1985 Jan 21;112(2):403–427. doi: 10.1016/s0022-5193(85)80294-0. [DOI] [PubMed] [Google Scholar]
  16. Schenzle D. An age-structured model of pre- and post-vaccination measles transmission. IMA J Math Appl Med Biol. 1984;1(2):169–191. doi: 10.1093/imammb/1.2.169. [DOI] [PubMed] [Google Scholar]
  17. Stenseth N. C., Bjørnstad O. N., Falck W. Is spacing behaviour coupled with predation causing the microtine density cycle? A synthesis of current process-oriented and pattern-oriented studies. Proc Biol Sci. 1996 Nov 22;263(1376):1423–1435. doi: 10.1098/rspb.1996.0208. [DOI] [PubMed] [Google Scholar]
  18. Stenseth N. C., Bjørnstad O. N., Saitoh T. A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan. Proc Biol Sci. 1996 Sep 22;263(1374):1117–1126. doi: 10.1098/rspb.1996.0164. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES