Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 May 7;265(1398):803–809. doi: 10.1098/rspb.1998.0363

Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites.

D W Coltman 1, W D Bowen 1, J M Wright 1
PMCID: PMC1689044  PMID: 9628038

Abstract

We examined the relations between fitness-related traits of wild harbour seal (Phoca vitulina) pups with microsatellite heterozygosity, and with a measure of genomic diversity based on the mean squared distance between microsatellite alleles within an individual, mean d2. Birth weight was positively influenced by maternal age, pup sex, and either mean d2 or individual heterozygosity in separate multiple regression models. The association of birth weight with mean d2 was stronger than that with heterozygosity, however. The factors maternal age, pup sex, and mean d2 combined to account for 36.8% of the variation in birth weight, with mean d2 accounting for the greatest explanatory power (52.3% of the variance explained). Pups which survived until weaning had significantly higher mean d2 than pups which died, independent of birth weight. These effects are consistent with heterosis resulting from recent population mixing, and/or inbreeding depression in this population. Mean d2 thus provides (i) a better measure of individual genetic variability than heterozygosity for microsatellite data; and (ii) a convenient tool for assessing the effects of inbreeding and outbreeding in natural populations.

Full Text

The Full Text of this article is available as a PDF (171.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. J., Amos W., Pomeroy P. P., Twiss S. D. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol Ecol. 1995 Dec;4(6):653–662. doi: 10.1111/j.1365-294x.1995.tb00266.x. [DOI] [PubMed] [Google Scholar]
  2. Coltman D. W., Bowen W. D., Wright J. M. PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol Ecol. 1996 Feb;5(1):161–163. doi: 10.1111/j.1365-294x.1996.tb00303.x. [DOI] [PubMed] [Google Scholar]
  3. Coulson T. N., Pemberton J. M., Albon S. D., Beaumont M., Marshall T. C., Slate J., Guinness F. E., Clutton-Brock T. H. Microsatellites reveal heterosis in red deer. Proc Biol Sci. 1998 Mar 22;265(1395):489–495. doi: 10.1098/rspb.1998.0321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldstein D. B., Pollock D. D. Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. J Hered. 1997 Sep-Oct;88(5):335–342. doi: 10.1093/oxfordjournals.jhered.a023114. [DOI] [PubMed] [Google Scholar]
  5. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodman S. J. Dinucleotide repeat polymorphisms at seven anonymous microsatellite loci cloned from the European harbour seal (Phoca vitulina vitulina). Anim Genet. 1997 Aug;28(4):310–311. [PubMed] [Google Scholar]
  8. Goodman S. J. Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol Biol Evol. 1998 Feb;15(2):104–118. doi: 10.1093/oxfordjournals.molbev.a025907. [DOI] [PubMed] [Google Scholar]
  9. Jiménez J. A., Hughes K. A., Alaks G., Graham L., Lacy R. C. An experimental study of inbreeding depression in a natural habitat. Science. 1994 Oct 14;266(5183):271–273. doi: 10.1126/science.7939661. [DOI] [PubMed] [Google Scholar]
  10. Kappe A. L., Bijlsma R., Osterhaus A. D., van Delden W., van de Zande L. Structure and amount of genetic variation at minisatellite loci within the subspecies complex of Phoca vitulina (the harbour seal). Heredity (Edinb) 1997 May;78(Pt 5):457–463. doi: 10.1038/hdy.1997.73. [DOI] [PubMed] [Google Scholar]
  11. Keller L. F., Arcese P., Smith J. N., Hochachka W. M., Stearns S. C. Selection against inbred song sparrows during a natural population bottleneck. Nature. 1994 Nov 24;372(6504):356–357. doi: 10.1038/372356a0. [DOI] [PubMed] [Google Scholar]
  12. Nei M. Genetic support for the out-of-Africa theory of human evolution. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6720–6722. doi: 10.1073/pnas.92.15.6720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pemberton J. M., Slate J., Bancroft D. R., Barrett J. A. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol. 1995 Apr;4(2):249–252. doi: 10.1111/j.1365-294x.1995.tb00214.x. [DOI] [PubMed] [Google Scholar]
  14. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stanley H. F., Casey S., Carnahan J. M., Goodman S., Harwood J., Wayne R. K. Worldwide patterns of mitochondrial DNA differentiation in the harbor seal (Phoca vitulina). Mol Biol Evol. 1996 Feb;13(2):368–382. doi: 10.1093/oxfordjournals.molbev.a025596. [DOI] [PubMed] [Google Scholar]
  16. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES